• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进的互信息最小化非线性盲源分离算法
Improved Mutual Information Minimization AlgorithmFor Nonlinear Blind Source Separation
Received:February 24, 2014  Revised:February 24, 2014
DOI:
中文关键词: 非线性盲源分离  互信息  自然梯度优化算法  扰动信号
英文关键词: nonlinear blind source separation  mutual information  natural gradient optimization algorithm  disturbance signal
基金项目:吉林省科技发展计划项目(201101110);吉林市科技发展项目(2013625009)Project Supported by the Scientific Research Fundation of the Education Department of Jilin Province (No.201101110) and the Scientific Research Fundation of the Education Department of Jilin City (No.2013625009)
Author NameAffiliationE-mail
YANG Jie-ming School of Information and Communication Engineering,Northeast Dianli University 670172713@qq.com 
QI Hou-ying* School of Information and Communication Engineering,Northeast Dianli University 824676643@qq.com 
Hits: 1910
Download times: 722
中文摘要:
      本文提出了一种改进的互信息量最小化非线性盲源分离算法,改善了优化算法在串音误差(ECT)方面大等的不足.该方法利用的自然梯度优化算法来优化目标函数,可以避免对矩阵的求逆计算,减少了计算时间.重点是在网络参数优化的过程中引入了扰动信号,防止在后期,算法会停滞不前,提高了非线性盲源分离算法的优化能力.实验结果表明所提的非线性盲源分离优化算法是一种良好的算法,取得了有效的、较稳定的分离结果.证明了新的优化算法优于传统的优化算法.
英文摘要:
      This paper presents an improved mutual information minimization algorithm for nonlinear blind source separation,perfects the optimization algorithm in terms of the crosstalk error(ECT) big,etc.The method uses the natural gradient optimization algorithm to optimize the objective function,this can avoid the matrix inversion calculation and reduce the computing time.Focus is on the introduction of disturbance signals in the network to optimize the process parameters.It prevents stagnation in the late algorithm,improves the ability of the optimization of nonlinear blind source separation algorithm.Experimental results show that the proposed nonlinear blind source separation optimization algorithm is a good algorithm,obtains effective,stable separation results.The experiment proves that the new optimization algorithm is superior to the traditional optimization algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd