• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进的GM(1,N)灰色关联模型预测铅酸蓄电池容量
The prediction of residual capacity for lead-acid battery based on improved GM(1,N) grey model
Received:February 28, 2014  Revised:February 28, 2014
DOI:
中文关键词: 蓄电池 容量预测 灰色模型 GM(1,N)
英文关键词: lead-acid batteries  residual capacity prediction  grey model  GM(1,N)
基金项目:国家科技部质检公益性行业科研专项项目
Author NameAffiliationE-mail
Li Peng* College of Mechanical and Electrical Engineering, China Jiliang University apeng332@163.com 
Hits: 2274
Download times: 957
中文摘要:
      铅酸蓄电池由于其容量大、成本低、自放电率低等优点是应急电源(EPS)系统的基本组成部分,剩余容量作为衡量蓄电池能力指标的重要参数直接影响着系统的安全运行。引入电池的端电压、内阻两个参数作为容量的两个关联因素,建立多因素关联分析的GM(1,N)灰色模型,并对模型进行了改进,针对影响模型预测精度的关键量“均值序列加权参数”提出了一种合理有效的选取方法,最后的预测实例验证以及误差分析表明,该方法具有操作简单、算法复杂度低而且预测精度高的优点,有很强的实际应用价值.
英文摘要:
      Because of the large capacity, low cost and low self discharge advantages,Lead acid batteries is becoming the basic components of the the emergency power supply (EPS) system.And the residual capacity as the important measure of battery capacity index directly affects the safe operation of the system.This article introduce the battery terminal voltage and internal resistance of the two parameters as the capacity of two associated factors to establish and improve a link between multiple factors analysis of gray model GM (1, N).After that,we proposes a reasonable and effective selection method of parameter which is influence the amount of key model prediction precision weighted average sequence parameters.The final prediction example verification and error analysis show that the method has simple operation, low algorithm complexity and the advantage of high precision, strong practical application value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd