• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
相空间重构和支持向量机结合的电力负荷预测模型研究
STUDY ON POWER LOAD FORECASTING MODEL BASED ON PHASE SPACE RECONSTRUCTION AND PSR-SVM
Received:April 01, 2014  Revised:April 01, 2014
DOI:
中文关键词: 关键词 支持向量回归 混沌 相空间重构 电力负荷预测
英文关键词: Keywords Chaos Theory Phase Space Reconstruction Support Vector Regression Power Load Forecasting
基金项目:山西省自然科学基金资助项目(2013011026-2)。
Author NameAffiliationE-mail
lixin* North University of China, lixin1986425@126.com 
yanhongwei North University of China,  
MA Hong-yi North University of China  
Hits: 2555
Download times: 1743
中文摘要:
      风电机组集中并网会对电网安全稳定运行带来影响,为了合理规划各类供电机组高效运行,对电力负荷预测的精度提出了更高的要求。电网负荷时间序列具有混沌特性,普通预测方法难以描述其特性和内在规律。利用混沌相空间重构理论对负荷时间序列进行研究,用互信息法和CAO方法分别求得时间延迟和嵌入维数,并由此得到系统最大李雅普诺夫指数,证明其具有混沌特性。然后根据时间延迟和嵌入维数对样本数据相空间重构,在此基础上利用支持向量回归算法(PSR-SVR)对电力负荷进行预测,支持向量回归采用网格寻优确定参数。最后将预测的结果同时间序列模型和BP神经网络模型的预测结果进行对比,结果表明,这是一种误差小,精度高的电网负荷预测方法。
英文摘要:
      Abstract The centralized operation of wind turbines impacts on the grid’s security and stability operation. For rational planning efficient operation of various power supply unit, the power load forecasting precision has been put forward higher requirements. The time series of grid has chaotic characteristics and it is difficult to describe its characteristics and inherent laws. We take advantage of the chaotic phase space reconstruction theory to study the power load time series sample data. Time delay and embedding dimension were obtained using the mutual information method and the CAO. Lyapunov exponent of this system is obtained so that we know the grid system has chaotic characteristics. Then reconstructed the phase space according to the time delay and embedding dimension. On the basis of phase space reconstruction, used support vector regression algorithm to predict the power load. The grid search method was used for for parameter optimization. Finally, the predicted results with the time series prediction model and BP neural network model were compared. The results show that this is a small error, high precision load forecasting method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd