• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多元重构预测和LS-SVR的变压器故障诊断
Transformer Fault Diagnosis based on Multiple Time Series Reconstruction and LS-SVR
Received:April 15, 2014  Revised:April 15, 2014
DOI:
中文关键词: 多变量重构,最小二乘支持向量回归机,油中溶解气体分析
英文关键词: monitor  real-time, the  wireless data  transfer, dissolved  gas analysis
基金项目:福建省中青年教师教育科研项目资助
Author NameAffiliationE-mail
Qu feng-cheng* Department of The theory of TRIZ Research Institute in Heilongjiang Province, Heihe University qufeng13@126.com 
Zhang xiuping Department of Physics and Chemistry, Heihe University  
Qiu min Department of Physics and Chemistry, Heihe University  
Cao fu-quan Department of The theory of TRIZ Research Institute in Heilongjiang Province, Heihe University  
Hits: 1942
Download times: 759
中文摘要:
      通过对变压器油中溶解气体进行预测,可以及早发现变压器故障。提出通过多变量时间序列重建的状态变量作为LS-SVR模型输入,并进一步作为变压器故障的预测模型。首先,给出基于多元重构的预测原理和LS-SVR理论。然后,讨论重构参数和LS-SVR参数对于预测误差的影响,通过合理选择参数确保预测的精度。最后,将方法用于变压器故障诊断实例以验证多元重构和支持向量机预测的适用性,通过与多种预测方法进行比较,基于LS-SVR原理的变压器故障组合预测模型的预测精度明显优于单一预测模型和其它的组合预测模型。
英文摘要:
      It can be used to find out transformer faults through the predict detection of transformer oil dissolved gas. By multivariate time series reconstruction of the state variables as LSSVR model inputs, a transformer fault prediction model was proposed. Firstly, the prediction based on multivariate reconstruction principle and LSSVR theory were given. Then, it was discussed the impact of the reconstruction parameters and LSSVR parameters for predicting errors. Genetic algorithm was adopted to ensure prediction accuracy. Finally, the method was used to verify the applicability of support vector machine prediction based on Lorenz system. Compared with other predictive approaches, the proposed combinational forecast model has higher prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd