• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于混沌时间序列的支持向量机短期风速预测模型研究
Short Term Wind Speed Prediction Model Based on Chaotic Time Series Using Support Vector Machine
Received:November 09, 2014  Revised:November 09, 2014
DOI:
中文关键词: 风电并网管理  短期风速预测  混沌时间序列  最小二乘支持向量机
英文关键词: wind power grid management, short-term wind forecasting,chaotic time series,least squares support vector machine
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目);河北省自然科学基金项目
Author NameAffiliationE-mail
HUANG Yan-hui* North China Electric Power University 09huangyanhui@163.com 
WANG Long-jie North China Electric Power University  
YANG Xue-ming North China Electric Power University  
Hits: 1895
Download times: 766
中文摘要:
      风电场风速及风电功率预测技术是加强风电并网管理的关键措施之一。为了提高短期风速预测的精度,减小风电并网对电力系统的电能质量及其安全稳定运行带来的影响,提出了基于混沌时间序列的支持向量机短期风速预测模型。该模型针对风速混沌时间序列建模,并采用基于贝叶斯框架的最小二乘支持向量机对风速进行短期预测。仿真实验结果表明,该预测模型有效地提高了短期风速预测的精度。
英文摘要:
      Wind speed and wind power forecasting technology are key measures to strengthen the management of integration of wind power. In order to improve the accuracy of short-term wind forecasting and reduce the impact of wind power grid on power quality and safe and stable operation of power system , a short term wind speed prediction model based on chaotic time series using support vector machine is proposed. In this model, short-term wind speed prediction is conducted by using least squares support vector machine under the Bayesian framework based on the modeling of chaotic time series of wind speed. Simulation results show that the proposed model can effectively improve the accuracy of short term wind speed prediction.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd