• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于三维漏磁场信号的储罐底板水平凹槽形缺陷量化方法研究
Quantification of horizontal groove defects on tank floor from three-axial MFL signals
Received:December 19, 2014  Revised:February 09, 2015
DOI:
中文关键词: 漏磁检测  水平凹槽形缺陷  三维漏磁场信号  贝叶斯算法  BP神经网络
英文关键词: nondestructive evaluation  horizontal groove defects  three-axial MFL signal  Bayesian Algorithm  BP neural network
基金项目:国家自然科学基金( 51277101) 、国家863 重大课题( 2011AA090301 ) 和国家重大科学仪器设备开发专项 ( 2013YQ140505)
Author NameAffiliationE-mail
Liu Xinmeng Tsinghua University lxmstudent@sina.com 
Zhao Wei* Tsinghua University zhaowei@mail.tsinghua.edu.cn 
Huang Songling Tsinghua University  
Hits: 1847
Download times: 874
中文摘要:
      本文针对油气储罐底板上可能存在的水平凹槽形缺陷,采用漏磁检测技术实施测量,并提出了基于贝叶斯算法的BP神经网络缺陷量化方法。该方法将贝叶斯算法引入BP神经网络基本架构中,控制网络复杂度并优化网络参数,从而建立了缺陷漏磁场信号与缺陷长度、宽度、深度的映射关系,且使缺陷量化方法可节约网络计算时间之同时,还提高了对水平凹槽形缺陷的量化精度。为获取更多的缺陷信息,本文采用三维漏磁场信号对水平凹槽形缺陷进行量化,进一步提高了对缺陷长度和宽度的量化精度。仿真结果表明,本文提出的方法在网络训练时间和缺陷量化精度上均具优于已有方法,具有很好的应用优势。
英文摘要:
      This paper utilizes a BP neural network based on Bayesian Algorithm to quantify the possible horizontal groove defects on tank floor of oil and gas from Magnetic flux leakage (MFL) signals. This method corporates the Bayesian Algorithm into the BP neural network model to control the complexity of the model and optimize weights of the network in order to build the relationship between the MFL signals and the defect features, which can save the training time of the network and accurately quantify the defect profile. In order to obtain more defects information, this paper uses the three-axial MFL signals to quantify the horizontal groove defects, which further improve the accuracy of quantification. The simulation results show that the method proposed in this paper exhibits better performance in both efficiency and accuracy for the quantification of horizontal groove defects.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd