• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进二进制粒子群算法在配电网重构中的应用
The Apply of Improved Binary Particle Swarm Optimization in Distribution Network Reconfiguration
Received:January 26, 2015  Revised:April 14, 2015
DOI:
中文关键词: 混合蛙跳思想  选择交叉操作  改进二进制粒子群算法  IEEE33
英文关键词: the idea of ??mixing leapfrog  selection crossover operation  improved binary particle swarm optimization  IEEE33
基金项目:江苏省自然科学基金
Author NameAffiliationE-mail
MA Caoyuan School of Information and Electrical Engineering,China University of Mining Technology mcycumt@126.com 
SUN Zhanzhan* School of Information and Electrical Engineering,China University of Mining Technology 1261387305@qq.com 
GE Sen School of Information and Electrical Engineering,China University of Mining Technology  
ZHU Lijun School of Information and Electrical Engineering,China University of Mining Technology  
Hits: 2075
Download times: 1127
中文摘要:
      本文将混合蛙跳思想引入粒子群算法,并结合遗传算法中的选择交叉操作,提出一种改进二进制粒子群算法,来解决配电网重构中的问题。并且动态调整粒子速度更新公式中的惯性系数,使粒子能够随更新次数的变化动态改变全局和局部搜索能力,防止算法早熟,以找到全局最优解。文章最后对典型IEEE33节点算例进行仿真,并与遗传算法进行对比分析,结果表明该方法不仅能有效避免算法早熟、快速收敛,而且稳定性好。
英文摘要:
      This paper applies the idea of mixing leapfrog particle swarm algorithm and selection crossover operation of genetic algorithm to particle swarm algorithm, and put forward an improved binary particle swarm optimization to solve the problem of distribution network reconfiguration. Through update dynamically adjust the inertia coefficient of speed formula of particle swarm optimization, so that the particles can dynamically change the global and local search capability with the number of updates in order to prevent the algorithm from premature and find the optimal solution. Finally, the example of typical IEEE33 node is simulated and compared with genetic algorithm, simulation results illustrate that this method can avoid the algorithm premature effectively, with the advantages of rapid convergence and good stability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd