• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
纵横交叉算法与模糊聚类相结合的变压器故障诊断
Fault Diagnosis Method of Transformer Based on Crisscross Optimization and Fuzzy Clustering
Received:March 20, 2015  Revised:April 08, 2015
DOI:
中文关键词: 纵横交叉算法  模糊聚类  故障诊断
英文关键词: crisscross optimization  fuzzy clustering  fault diagnose
基金项目:国家自然科学基金项目(51307025);广东省自然科学基金(S2013040013776,S2012040007911);广东省教育厅育苗工程项目(2013LYM_0019)
Author NameAffiliationE-mail
Meng Anbo College of Automation,Guangdong University of Technology lu264952035@qq.com 
Lu Haiming* College of Automation,Guangdong University of Technology 496113194@qq.com 
Li zhuang Guangdong University of Technology  
Guo Zhuangzhi College of Automation,Guangdong University of Technology  
Hits: 2147
Download times: 870
中文摘要:
      溶解气体分析与模糊C-均值(FCM)聚类相结合能有效提高变压器故障诊断的准确率,但FCM存在聚类结果不稳定和容易陷入局部最优等问题。针对FCM在变压器故障诊断中的不足,提出采用纵横交叉算法优化FCM(CSO-FCM)聚类来进行故障诊断。CSO算法采用一种双交叉搜索机制,其中横向交叉引入扩展因子增强全局搜索能力,纵向交叉引入维交叉概念,从而避免维局部最优问题。两种交叉算子交替产生中庸解,通过与父代竞争产生的占优解在种群中相互催化,从而避免早熟问题的同时能够迅速收敛到全局最优。该方法有效弥补了单一算法的不足,拥有模糊理论处理不确定信息的能力以及纵横交叉算法全局收敛性强的特点。实例分析表明,该方法与传统FCM相比,能获得更优的聚类中心,有效提高了诊断的准确性和快捷性。
英文摘要:
      The combination of dissolved gas analysis and FCM clustering is effective in improving the accuracy rate of power transformer fault diagnosis, but the result of FCM clustering is unstable and easy getting stuck in a local optimum. Optimized FCM clustering by the proposed CSO (CSO-FCM) is introduced to diagnose the fault of transformer in order to conquer the shortages of FCM clustering. The CSO algorithm includes horizon cross as well as vertical cross, whose combining enhances the global convergent ability while the introduction of competitive mechanism drives the potential solutions approximate the global optima in an accelerating fashion without sacrificing the convergence speed. This method effectively compensates the demerits of single intelligent algorithm, which not only has the ability to dispose unstable information of fuzzy theory, also has an advantage of global convergence of CSO. Simulation and case analysis indicate that, compared with the traditional FCM clustering, the CSO-FCM clustering can obtain high performance clustering center and effectively raise power transformer fault diagnosis accuracy and diagnosis speed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd