• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多尺度形态学和Kalman滤波的基波分量提取
Fundamental Component Extraction Based on Multi-scale Morphology and Kalman Filter
Received:April 01, 2015  Revised:May 21, 2015
DOI:
中文关键词: 数学形态学  多尺度分析  Kalman滤波  基波分量  
英文关键词: mathematic morphology  multi-scale analysis  Kalman filter  fundamental component  
基金项目:广西研究生教育创新计划项目(YCSZ2014041)
Author NameAffiliationE-mail
LV Siying* School of Electrical Engineering,Guangxi University 369347928@qq.com 
LI Dan School of Electrical Engineering,Guangxi University  
QIN Xin School of Electrical Engineering,Guangxi University  
Yao Hang School of Electrical Engineering,Guangxi University  
Hits: 1922
Download times: 1047
中文摘要:
      提出了一种新的基波分量提取算法。采用改进的数学形态滤波器对采集信号进行多尺度分析得到平滑信号和细节信号,利用平滑信号更新Kalman滤波器的观测值,减少故障信号暂态噪声的干扰,提高了滤波算法的收敛速度;利用细节信号实时在线计算测量噪声的方差,提高了滤波算法的收敛精度。在Matlab/Simulink环境下搭建仿真模型对算法进行验证与测试,仿真结果证实了算法的可行性和有效性。
英文摘要:
      A new fundamental component extraction algorithm is presented. The sampling signals are decomposed to smooth signals and detail signals by improved multi-scale mathematic morphology filter. The smooth signals are adopted to update the observations of the Kalman filter to reduce the interference of fault signals’ transient noise, which can improve the convergence speed of the filter algorithm. Detail signals are adopted to calculate the measurement noise variance in real-time to improve the convergence precision of the filter algorithm. The Matlab/Simulink simulation system is built and the results show theSalgorithm feasibilitySandSeffectiveness.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd