• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于逐层最优基小波和贝叶斯估计的电缆瓷套终端红外图像自适应去噪方法
Adaptive De-noising Method for Infrared Image of Porcelain Bushing Cable Terminal Based on Layer by Layer Optimal Basic Wavelet And Bayes Estimation
Received:April 07, 2015  Revised:April 07, 2015
DOI:
中文关键词: 红外图像  最优基小波  Bayes估计  小波去噪  自适应
英文关键词: infrared image  optimal base wavelet  Bayes estimation  wavelet de-noising  adaptive
基金项目:国家863计划资助项目(2011AA05A120)
Author NameAffiliationE-mail
WU Ju-zhuo* School of Electric Power,South China University of Technology 793145171@qq.com 
NIU Hai-qing School of Electric Power,South China University of Technology  
XU Jia School of Electric Power,South China University of Technology  
Hits: 1631
Download times: 340
中文摘要:
      抑制图像噪声是电气设备红外诊断技术的前提。为有效抑制白噪声,提高诊断的准确性,本文提出一种用于电缆瓷套终端红外图像的基于逐层最优基小波和贝叶斯估计的自适应去噪方法。该方法首先将红外图像真彩图分解为R、G、B颜色分量图像。对每一颜色分量图像,定义小波分解尺度系数能量百分比,基于能量百分比最大的原则,自适应选取最优基小波对颜色分量图像逐层进行小波分解,并结合Bayes最优估计准则对细节小波系数进行处理,对尺度系数和处理后的小波系数进行逐层小波重构,得到去噪后的颜色分量图像。将去噪后的颜色分量图像进行合成,得到去噪后的图像。该方法能够有效地去除白噪声,并且使去噪后的图像尽可能保留细节信息。数值试验表明,与运用sym4小波进行单一小波分解去噪方法比较,运用该方法去噪后图像的信噪比(SNR)更高,最小均方误差( MSE )更小。
英文摘要:
      Suppression of image noise is the premise of infrared condition diagnosis of electrical equipment. To improve the effectiveness of suppress white noise in the infrared image of porcelain bushing cable terminal, a kind of adaptive de-noising method based on layer by layer optimal basic wavelet and Bates estimation is put forward in this paper. The method decompose image into R、G and B sub-image. For each one, based on the principle of energy maximum of scale coefficients, the optimal basic wavelet in every layer is selected adaptively. Next, utilizes those optimal basic wavelets to decompose the sub-image, and processing the details of wavelet coefficients by the optimal Bayes estimation criterion. Then, the real sub-image is remained and white noise is removed. Finally, compounds the de-noised R、G and B sub-image together. Simulation results indicate that the method proposed in this paper removes the white noise effectively and keep the information of the original image at the same time. The de-noising ability of this method is better than the sym4 wavelet by having higher SNR and smaller MSE.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd