• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
光伏并网系统二电平逆变器的故障诊断
Fault Diagnosis of Two-level Inverter of Photovoltaic Grid System
Received:April 15, 2015  Revised:June 10, 2015
DOI:
中文关键词: 逆变器  故障诊断  小波分解  直流分量  自适应动量梯度下降法  BP神经网络
英文关键词: inverter  fault diagnosis  wavelet decomposition  DC component  Adaptive momentum gradient descent algorithm  BP neural network.
基金项目:国家国际科技合作专项(2014DFG72240);江西省科技支撑计划(2013BBE50102);江西省科技落地计划(KJLD14006)
Author NameAffiliationE-mail
WAN Xiaofeng* Information Engineering School of Nanchang University xfwan_jx@163.com 
LIU Qi Information Engineering School of Nanchang University liuqi_91@163.com 
DU Liping Information Engineering School of Nanchang University  
Huwei Information Engineering School of Nanchang University 459648678@qq.com 
Luoxuan State Grid Power Supply Branch Ganzhou in Jiangxi Province 361775788@qq.com 
Hits: 1480
Download times: 354
中文摘要:
      为避免因采集多元信息带来成本的提高和因处理多元数据影响诊断系统的快速性问题,同时为进一步提高故障诊断的准确性,提出采用基于小波分解和直流分量进行充分提取三相逆变器输出电流的信息进行故障诊断的方法。首先进行小波分解提取故障特征并进行归一化处理;同时为了进一步提高定位故障功率管的精准度,再提取三相输出电流信号的直流分量值,并将以上两种信息融合;最后采用自适应动量梯度下降法的BP神经网络进行训练。仿真结果表明,该方法在避免采集和处理多元数据的同时,进一步提高了故障功率管的识别和定位,准确率达98.15%,实现了逆变器开路情况的故障诊断。
英文摘要:
      To avoid the increase cost of acquisition of multi-source information and the impact of rapid diagnostic system problems in handling multi-source data, as well as to further improve the accuracy of fault diagnosis, we proposed the fault diagnosis methods that based on wavelet decomposition and direct current (DC) components values to fully extract output currents information of three-phase inverse. First, using the wavelet decomposition to extract fault features and normalization processing; at the same time, in order to further improve the positioning accuracy of the faulty power tube, then we extract the three-phase output current signal of the DC components values, and fusion these two kinds of information; and finally trained by adaptive gradient descent momentum BP neural network. Simulation results show that this method avoids acquiring and processing data from multiple sources, at the same time ,further improves the identification and location of the fault power tube, accuracy rate of 98.15%, achieves the inverter open circuit fault diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd