• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
主动配电系统中分布式电源和储能系统的优化配置
Multi-objective optimal placement of distributed generation and energy storage system in active distribution network
Received:May 06, 2015  Revised:September 08, 2015
DOI:
中文关键词: 主动配电系统  分布式电源  储能系统  多目标优化
英文关键词: active  distribution system, distributed  generation, energy  storage system, multi-objective  optimal placement
基金项目:
Author NameAffiliationE-mail
Sheng Siqing School of Electrical and Electronic Engineering,North China Electric Power University hdbdssq@163.com 
Liu Meng* School of Electrical and Electronic Engineering,North China Electric Power University 15733227850@163.com 
Hits: 1622
Download times: 586
中文摘要:
      主动配电系统的发展给分布式电源的高度渗透并网创造了条件。针对多类型分布式电源和储能系统在主动配电系统中的接入位置及容量问题,建立了综合主动配电系统的经济成本、电压质量以及CO2排放量三个方面的多目标优化配置模型。对传统的NSGA-Ⅱ算法进行了改进,在初始种群中引入反向学习机制,并以一定比例选择种群中的支配个体,以增加种群的多样性和提高算法的搜索能力,然后基于权重系数调节方法从帕累托最优解集中确定最优解。最后,利用IEEE-33配电系统算例验证了所提出模型和算法的正确性和可行性。
英文摘要:
      The development of active distribution systemScreates the conditionsSfor theShigh penetration ofSdistributed generation. For the positions and capacitiesSproblems ofSvariousStypes of distributed generationSandSenergy storageSsystem in activeSdistributionSsystem, aSmulti-objective optimization model is established, in which the economic costs of active distribution system,S voltage qualitySand the emissions of CO2 is considered. The traditional NSGA-SII algorithmSis improved. Opposition-based learning is introducedSin initial population , and the dominated individuals of the population are selected in a certain proportion to increase the population diversity and improve searching ability of the algorithm. The method of adjusting weight coefficient is used to screen the optional solution out from the Pareto optimal solution set. Finally, by a 33-bus network system the reasonableness and feasibility of the proposed model and algorithm are proved.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd