• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于压缩感知的电力设备视频图像去噪方法研究
The Research of Power Equipments Image Denoising Algorithm Based on Compressed Sensing
Received:May 25, 2015  Revised:September 30, 2015
DOI:
中文关键词: 压缩感知  稀疏表示  去噪  K-SVD
英文关键词: electric power video surveillance,Compressed sensing, sparse representation, denoising, K-SVD
基金项目:国家自然科学基金项目(551307020)
Author NameAffiliationE-mail
yuhuanan northeast dianli university yhn810117@163.com 
wuyunrui* northeast dianli university 44758765@qq.com 
Hits: 1603
Download times: 721
中文摘要:
      针对电力视频监控图像中存在的噪声,结合压缩感知理论,采用基于过完备字典的稀疏表示方法进行去噪。使用噪声图像训练过完备字典,其中过完备字典的更新使用K-SVD算法,求解稀疏系数使用OMP算法,且根据算法的特点引入了Dice匹配准则来改进正交匹配追踪算法用于求解稀疏系数,最后重构去噪后的图像。Matlab仿真实验表明,对添加了不同标准差的高斯噪声的图像,本文方法具有良好的去噪效果,与目前常用的小波函数相比,能更好的降低图像中的高斯白噪声,并且在字典训练过程中直接使用视频拍摄的带噪声图像,即使没有原始的无噪声图像依然能够完成去噪任务。
英文摘要:
      We address the image denosing problem in the video surveillance system in smart grid, the approach is based on compressed sensing and sparse representation theory over overcomplete dictionary. We train dictionary by noisy image, use K-SVD algorithm to update dictionary and OMP to compute sparse representation coefficients. An improved orthogonal matching pursuit algorithm based on atomic matching criterion of Dice coefficient is used to reconstruct images. Finally, we can get the denoised image. The matlab simulation experiments show that this method is an effective denoising algorithm, the denoising result for Gaussian white noise is better than the wavelet functions. Using video images which is corrupted to train the dictionary, the denoising task could be completed efficiently even there is no high-quality original image.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd