• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
压力传感器的温度补偿研究及其应用
Temperature compensated pressure sensor and its application
Received:July 10, 2015  Revised:November 05, 2015
DOI:
中文关键词: 温度补偿  压力传感器  BP神经网络  遗传算法  粒子群算法
英文关键词: temperature  compensation, pressure  sensors, BP  neural network, genetic  algorithm, particle  swarm optimization
基金项目:中央高校基本科研业务费专项资金资助(项目编号:2015JBM085)
Author NameAffiliationE-mail
Li Yang* College of Electrical Engineering of Beijing Jiao tong University 14125977@bjtu.edu.cn 
Liu Mingguang College of Electrical Engineering of Beijing Jiao tong University mgliu@bjtu.edu.cn 
Qian Xuecheng College of Electrical Engineering of Beijing Jiao tong University 13121456@bjtu.edu.cn 
Chen Jia College of Electrical Engineering of Beijing Jiao tong University 13121390@bjtu.edu.cn 
Wang Xin College of Electrical Engineering of Beijing Jiao tong University xwang3@bjtu.edu.cn 
Hits: 2009
Download times: 818
中文摘要:
      为了解决影响压力传感器测量的温度漂移问题,研制一种适合轨道车空压系统压力测量的高性能传感器。本文提出结合GA-PSO算法优化BP神经网络的新型压阻式压力传感器温度补偿模型,通过MATLAB仿真验证该模型的可行性。仿真结果表明:与BP-LM算法和GA-BP算法相比,新的优化算法收敛速度提高了89%,预测结果的误差绝对值均在0.025kpa以下,且变化范围小,满足“快、准、稳”的高性能高求。装置现场运行效果良好,在温度相差较大的一天之内的不同时间段轨道车运行时的空压系统测量气压均在0.75Mpa左右。
英文摘要:
      To address the impact pressure sensor measures the temperature drift problem, the development of a rail car for high-performance sensor compressed air system pressure measurements. This paper presents new piezoresistive pressure sensor temperature compensation model for combining GA-PSO algorithm to optimize BP neural network, the feasibility of this model by MATLAB simulation. Simulation results show that: compared with the BP-LM algorithm and GA-BP algorithm, a new optimization algorithm converges faster 89%, the absolute value of prediction errors were 0.025kpa less, and small-scale changes and meet the "fast, accurate , steady high performance requirements.Plant site running well, compressed air system on the same day in different periods railcar running pressure measurements were about 0.75Mpa.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd