• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
风电场有功出力的EEMD特性分析
The EEMD Characteristic of Wind Farms Active Power
Received:July 23, 2015  Revised:July 23, 2015
DOI:
中文关键词: 风电特性  有功出力  集合经验模态分解  本征模函数
英文关键词: wind  power characteristics, active  outputs, EEMD, IMF
基金项目:国家自然科学基金项目(51177010);国家自然科学基金项目(51377017)。
Author NameAffiliationE-mail
Wang Yibo* School of Electrical Engineering,Northeast Dianli University 469682939@qq.com 
Cai Guowei School of Electrical Engineering,Northeast Dianli University  
Yang Deyou School of Electrical Engineering,Northeast Dianli University  
Fang Yuan Heilongjiang Longyuan Wind Power CO.,LTD.  
Ye Dewu School of Electrical Engineering,Northeast Dianli University  
Hits: 1491
Download times: 1007
中文摘要:
      准确、全面的了解风电场有功出力特性是高效利用风能资源的前提,然而风电场出力数据由于其受自然来风影响而存在剧烈的波动性与随机性,针对于此,本文首先在对风电场出力特性进行描述的基础上,引入了自适应的数据分解方法——集合经验模态分解(EEMD),利用EEMD将采样得到的风电场非线性、非稳定有功出力的时间序列数据分解为对应的若干个本征模函数IMF,并通过观察分解所得的本征模函数IMF以及其各分量的波动情况来深入了解采样区域的风电出力特性,以期通过此方法为未来更好、更高效的利用大规模风电提供新的思路。
英文摘要:
      Accurate and comprehensive understanding of the wind power output characteristics is the precondition of efficient utilization of wind energy resources, wind power output, however, due to the affected by the natural wind to exist severe volatility and randomness. For this, the wind power output characteristic is described first in this article, and then an adaptive data decomposition method is introduced, that is Ensemble Empirical Mode Decomposition (EEMD), the nonlinear and unstable active output of time series data is decomposed into several intrinsic mode functions (IMF) by EEMD, by observing the decomposition of the IMF and the volatility of each component to deeply understand the wind power output characteristics of sampling area, hoping it will be a new thought that better and more efficient use of large scale wind power in the future.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd