• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于群智能强化学习的电网最优碳-能复合流算法
Multi-Objective Optimal Carbon-energy Combined-flow of Power Grid Based on Swarm Intelligence Reinforcement Learning Algorithm
Received:July 27, 2015  Revised:July 27, 2015
DOI:
中文关键词: Q(λ)算法  群智能  最优碳-能复合流  强化学习
英文关键词: Q(λ)learning, swarm  intelligence, optimal  carbon-energy  combined-flow, reinforcement  learning
基金项目:国家重点基础研究发展计划(973计划);国家自然科学基金项目(面上项目,重点项目,重大项目)
Author NameAffiliationE-mail
Guo Lexin* School of Electric Power,South China University of Technology guolexin1990@163.com 
Zhang Xiaoshun School of Electric Power,South China University of Technology  
Tan Min School of Electric Power,South China University of Technology  
Yu Tao School of Electric Power,South China University of Technology  
Hits: 2208
Download times: 1085
中文摘要:
      本文结合电网能流和碳排放流的传输特性,建立了电网最优碳-能复合流的数学模型,并提出了基于群智能的多步回溯Q(λ)强化学习算法,有效解决了电网碳-能复合流的动态优化问题。其中以线性加权的方式把电网网损、碳流损耗和电压稳定设计为奖励函数,通过引入粒子群的多主体计算,每个主体都有各自的Q值矩阵进行寻优迭代。IEEE118节点仿真结果表明:较传统Q(λ)算法本文所提出算法能在保证较好全局寻优能力的同时,收敛速度至少能提高10倍以上,为解决实际大规模复杂电网的碳-能复合流在线滚动优化提供了一种快速、有效的方法。
英文摘要:
      Considering the transmission characteristic of carbon emission flow and power flow in power grid, this paper proposes the concept of carbon-energy combined-flow. Further this paper adopts a PSO-Q(λ) learning algorithm for optimal carbon-energy combined-flow. The carbon emission loss, active power loss and voltage deviation are chosen as the optimization objectives. The algorithm converts the load sections and controllable variables to status and action,and searches for the optimal action strategy via continuous fault testing, action correction and iteration dynamically. Simulation in an IEEE 118-bus system indicates that the PSO-Q(λ)learning algorithm, which improve the convergence speed and maintain the abilities of seeking the global excellent result, providing a feasible and effective way to carbon-energy combined-flow on-line receding horizon optimization in a complex power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd