• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于数据挖掘技术和支持向量机的短期负荷预测
Short-term Load Forecasting based on Support Vector Machines and Data Mining Technology
Received:September 02, 2015  Revised:September 02, 2015
DOI:
中文关键词: 电力系统  短期负荷预测  数据挖掘  支持向量机
英文关键词: electric power systems  short-term load forecasting  data mining technology  support vector machine
基金项目:
Author NameAffiliationE-mail
Wang Xiaojun School of Electrical Engineering Beijing Jiaotong University xjwang1@bjtu.edu.cn 
Bi Sheng* School of Electrical Engineering Beijing Jiaotong University 13121385@bjtu.edu.cn 
Xu Yunkun School of Electrical Engineering Beijing Jiaotong University 13121488@bjtu.edu.cn 
Sun Yuejia School of Electrical Engineering Beijing Jiaotong University 13121466@bjtu.edu.cn 
Hits: 2182
Download times: 487
中文摘要:
      支持向量机方法已经非常成熟的应用在短期负荷预测领域,它在选取历史日期进行模型训练的时候通常选取距离预测日相近的一段日期,而没有考虑这段时间气象条件、星期类型、节假日造成的影响,使得所建立的模型并不能完全的反映预测日的特征。本文提出了基于一种基于数据挖掘技术的支持向量机负荷预测方法,该方法给出了预测模型样本选取的新颖方法,首先采用层次聚类法对历史日负荷进行聚类,经层次聚类得到的分类结果建立决策树,根据待预测日的属性在决策树中查询得到支持向量机预测模型输入的历史负荷,建立支持向量机模型对待预测日的负荷进行预测。实例中负荷数据采用浙江省地级市的历史负荷,用新方法对该地区的日96 点负荷进行预测,并将该算法与传统的支持向量机算法进行比较,本文提出的方法解决了传统的基于支持向量机方法训练日期选取不能反映待预测日特征的问题,故本算法结果具有较高预测精度。
英文摘要:
      Support vector machine (SVM) method is already very common in the field of short-term load forecasting. Traditionally, historical data is usually selected from the date around the forecast day when the model is trained, without considering the effects of the meteorological conditions, the types of the week and the holidays, therefore the established model does not fully reflect the characteristics of the forecast day. A support vector machine load forecasting method based on data mining technology is proposed in this paper. It gives a novel method to select the sample for prediction model. Firstly, hierarchical clustering method is used to cluster the historical load. A decision tree is set up by the classification result. According to the properties of the forecast date, the historical load for support vector machine prediction model is obtained through the decision tree, then establish support vector machine model to predict the daily load. Data from a specific area in Zhejiang province was used to verify ninety-six points load forecasting, the performance of algorithm was compared with SVM without data mining, In this paper, we propose a method to solve the problem that the traditional SVM method cannot properly select the dates which reflect the characteristics of the day.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd