• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMDAN与量子粒子支持向量机的电力负荷组合预测
The Power Load Combined Forecasting Based on CEEMDAN and QPSO-SVM
Received:October 27, 2015  Revised:October 27, 2015
DOI:
中文关键词: 经验模态分解  CEEMDAN  支持向量机  量子粒子群
英文关键词: empirical  mode decomposition, CEEMDAN, SVM, quantum  particle swarm  optimization
基金项目:国家科技支撑计划课题资助(2013BAA02B01)
Author NameAffiliationE-mail
Jia Yilun* School of Electrical Engineering,Wuhan University 422466769@qq.com 
Gong Qingwu School of Electrical Engineering,Wuhan University 2009hanhaicangyu@sina.com 
Li Junxiong School of Electrical Engineering,Wuhan University 867040797@qq.com 
Zhan Jinsong School of Electrical Engineering,Wuhan University 1264302669@qq.com 
Hits: 2625
Download times: 954
中文摘要:
      为更精确地对电力系统负荷进行预测,本文提出一种基于添加自适应白噪声的完全集合经验模态分解与量子粒子支持向量机的组合预测方法。首先针对原始经验模态分解办法中存在的模态混叠及集合经验模态分解方法引入白噪声造成信号失真等问题,提出添加自适应白噪声的完全集合经验模态分解方法,并用其将原始信号分解到不同时间尺度。利用支持向量机方法分解结果分别进行预测,并采用量子粒子方法对支持向量机中的不敏感损失系数、惩罚系数及核宽度系数进行寻优,从而得到最好的预测结果。最后,通过对青海某区域的电力系统负荷预测,并引入不同方法进行对比,证实了该方法的有效性与实用性。
英文摘要:
      To predict the power system load more accurately, this article proposes a combined forecast method based on the complete ensemble empirical mode decomposition with adaptive noise and quantum particle swarm optimization. Firstly, aiming at the modes overlap problem and signal distortion existing in ensemble empirical mode decomposition, this paper proposes the complete ensemble empirical mode decomposition with adaptive noise, decomposes the original signal into the different time scale. Then it uses the support vector machine to predict the decomposition result, and employs the quantum particle swarm optimization method to optimize the insensitive loss coefficient, penalty coefficient and kernel function. Finally, by forecasting the power system load in a certain domain of Qinghai Province and comparing it with another different methods, which proves the validity and practicability of the method mentioned in this paper.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd