• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进小波变换方法的电力系统低频振荡参数辨识
Extraction and Analysis of Under Frequency Oscillation Using Improved Wavelet Algorithm in Power System
Received:November 12, 2015  Revised:April 12, 2016
DOI:
中文关键词: 低频振荡  模态辨识  Morlet小波变换  数据缩减  
英文关键词: Low frequency oscillations  Parameter identification  Morlet wavelet  Data reduction  
基金项目:国家自然科学(51177010);长江学者和创新团队发展计划资助(IRT1114)。;国家自然科学基金项目(面上项目,重点项目,重大项目)
Author NameAffiliationE-mail
Sun Zhenglong* Northeast Dianli University,School of Electrical Engineering,Jilin City,Jilin Province jlsunzl@126.com 
Wang Yuwei State Grid JilinSheng Electric Power Supply Company,Jilin City,Jilin Province wangyuwei0510@126.com 
Liu Cheng Noreast Dianli University 763584498@qq.com 
Hits: 1734
Download times: 768
中文摘要:
      基于多点量测数据的低频振荡模态参数辨识方法具有辨识精度高,覆盖模态信息全的特点,但是该方法存在数据量增大,计算时间冗长的问题。针对上述问题,本文将基于数据缩减技术的改进小波变换参数识别方法应用于电力系统低频振荡参数辨识中。该方法通过对发电机出口有功功率信号的正功率谱密度矩阵进行奇异值分解,有效识别系统的模态阶数。利用奇异值分解将待辨识信号的协方差信号进行数据缩减,充分保留信号的信息量,从而在保证计算合理及精度的前提有效地减少待辨识的数据量,进而利用连续Morlet小波变换识别电力系统低频振荡参数。通过对4机2区域系统和EPRI-36节点系统进行算例对分分析,结果表明改进的小波变换方法能够有在准确提取电力系统低频振荡模态参数的前提下,有效减少计算所用数据量,提高计算效率。
英文摘要:
      The approach of extracting under frequency oscillation modes based on multi-measurement data, has high precision and reliability. However, the huge amount of data and long calculation time have limited the application of the approach. In this paper, a robust online approach based on improved wavelet transform is proposed to extract the parameters of power system dominant oscillation mode from wide-area measurements. The singular value decomposition (SVD) is used to analyze the positive power spectrum matrix of generator electromagnetism power to determine the orders of oscillation modes. To reduce the covariance signals, the SVD is used to diminish the amount of data which is involved in the extraction. Finally, the modal parameters are extracted from each mode of reduced signals using the improved wavelet algorithm in the specified frequency ranges. Through the study of 4-generator 2-area and EPRI-36 test systems, it is verified that the proposed improved wavelet algorithm could extract accurate oscillation parameters with reduced computation data size to increase calculation efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd