• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PSO-MP算法和RBF神经网络的电能质量扰动识别
The classification of power quality disturbance based on PSO-MP algorithm and RBF neural network
Received:January 24, 2016  Revised:March 25, 2016
DOI:
中文关键词: 电能质量扰动  原子分解  粒子群算法  消噪
英文关键词: power  quality disturbance, atomic  decomposition, particle  swarm optimization (PSO), de-noising
基金项目:河北省高等学校科学技术研究项目(QN2016064)
Author NameAffiliationE-mail
Wang Yunjing Key Laboratories of Electronic Energy Saving and Transmission Control,Yanshan University ysuwyj@163.com 
Li Yan Key Laboratories of Electronic Energy Saving and Transmission Control,Yanshan University ly_0306@163.com 
Qu Zhengwei* Key Laboratories of Electronic Energy Saving and Transmission Control,Yanshan University ysu_qzw@163.com 
Liu Shengnan Key Laboratories of Electronic Energy Saving and Transmission Control,Yanshan University 524869920@qq.com 
Hits: 1955
Download times: 675
中文摘要:
      准确识别扰动信号类型对分析和治理电能质量问题具有重要意义。本文提出一种基于粒子群优化匹配追踪算法(PSO-MP)和RBF神经网络的电能质量扰动识别方法。首先,构建工频原子库将工频信号提取出来,得到的残余信号能更好地体现扰动信号差异性;再利用PSO优化匹配追踪算法以减小计算量,并结合离散Gabor原子库对残余扰动信号进行稀疏分解,准确提取其原子参数;最后将原子参数以及残余信号在原子上的投影的均值和标准偏差作为特征量,利用RBF神经网络对扰动信号进行识别。仿真算例表明,该方法能够有效地识别几种常见的电能质量扰动,且具有抗噪性能强、计算量小等优点。
英文摘要:
      It is of great significance to accurately identify the type of disturbance signal to analyze and control the power quality. In this paper, a new method of power quality disturbance identification based on matching pursuit optimized by particle swarm optimization(PSO-MP) and RBF neural network is proposed. Firstly, in order to let the residue signal to better reflect the different disturbance signal difference, the method using the fundamental atomic library to extract the fundamental; Then, the MP algorithm is optimized by PSO to reduce the calculation amount, which combined with discrete Gabor atom libraries can accurately extract atomic parameters of residual disturbance signal by sparse decomposition; Finally, using RBF neural network identify disturbance signals by features, which is the mean and standard deviation of the atomic parameter and projection of residual signal on the atom. Simulation examples show that the proposed method can effectively identify several common power quality disturbances with a small amount of computation and good anti noise performance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd