• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于模糊神经网络的光伏发电系统功率控制方法
Power Control Strategies for PV Power System using Fuzzy-Neural Networks
Received:March 18, 2016  Revised:March 18, 2016
DOI:
中文关键词: 光伏发电  模糊神经网络  故障穿越  功率控制
英文关键词: PV generation  fuzzy-neural networks  fault ride-through  power control
基金项目:
Author NameAffiliationE-mail
Lu Chang* Power Control Strategies for PV Power System using Fuzzy-Neural Networks james_sunny2015@163.com 
Zhi YongJun Pingdingshan Power Supply Company, State Grid Henan Power Company zhiyongjun@163.com 
Zhou ZhiFeng Pingdingshan Power Supply Company, State Grid Henan Power Company zhouzhifeng@163.com 
Hits: 1763
Download times: 520
中文摘要:
      并网光伏发电系统的故障穿越是大规模新能源接入电网和灵活调控的技术难题,针对传统光伏发电系统在电网故障条件下穿越控制策略的不足,本文提出一种基于模糊神经网络的光伏发电系统功率控制方法。在电网电压突变和跌落情况下能够快速地调整光伏发电系统的工作模式,以适应光伏阵列最大输出功率和并网逆变器额定容量以及最大输出电流的限制,具有稳定性强、跟踪速度快等优点。给出了控制策略总体架构,详细阐述了电网故障控制器运行模式切换策略,建立了模糊神经网络算法的数学模型和实现流程。最后,在Matlab/Simulink平台下搭建了系统仿真模型,仿真结果验证了所提出控制策略的有效性。
英文摘要:
      Fault ride-through (FRT) techniques are crucial for the large-scale grid-integration and flexible control of the grid- connected PV generation systems. In order to overcome the drawbacks of conventional FRT solutions for the PV systems under grid fault conditions, a new power control strategy based on fuzzy-neural networks (FNN) has been proposed for the PV systems. The operation modes can be flexibly adjusted to adapt grid voltage abrupt changes and voltage sag, thus the maximum output power of PV panels and maximum inverter power rating and current rating can be taken into consideration. The benefits of enhanced stability characteristics and tracking performance can be achieved. The controller architecture and the operation modes are presented, and the mathematical model and the flow- chart of the fuzzy-neural network algorithm are given. Finally, the system model is established using Matlab/Simulink, and the effectiveness of the presented control strategy for PV system has been confirmed by the simulation results.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd