• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于人工蜂群优化极限学习机的短期负荷预测*
Short-term load forecasting based on improved extreme learning machine with artificial bee colony algorithm
Received:March 22, 2016  Revised:June 06, 2016
DOI:
中文关键词: 短期负荷预测  极限学习机  人工蜂群
英文关键词: short-term  load forecasting, extreme  learning machine, artificial  bee colony
基金项目:国家高技术研究发展计划(863计划)项目(SS2014AA052502);吉林省科技发展计划项目(20160411003XH);吉林省社科基金(2015A2);吉林省教育厅“十三五”科技项目(吉教科合字[2016]第90号);吉林市科技发展计划项目(20156407)
Author NameAffiliationE-mail
Wang Wenjin* College of Electrical Engineering,Northeast Dianli University wangwenjin0829@126.com 
Qi Jiajin Hangzhou Municipal Electric Power Supply Company of State Grid Qijiajin@126.com 
Wang Wenting College of Electrical Engineering,Northeast Dianli University huzhiqiang19910714@163.com 
Huang Nantian College of Electrical Engineering,Northeast Dianli University huangnantian@126.com 
Hits: 1727
Download times: 743
中文摘要:
      针对极限学习机(Extreme Learning Machine, ELM)在训练前随机产生输入层权值和隐含层阈值导致输出结果不稳定,影响短期负荷预测精度的缺陷,提出基于人工蜂群(Artificial Bee Colony, ABC)算法改进ELM(ABC-ELM)的短期负荷预测新方法。首先,选用历史负荷、外界气象因素和待预测日星期类型等属性构成ELM输入向量,以负荷值为输出,构建ELM模型;其次,采用ABC对ELM输入层权值和隐含层阈值进行优化;最后,根据优化参数,建立基于ABC-ELM的负荷预测模型,并以该模型开展负荷预测。根据国内某大型城市实测负荷数据开展实验,验证方法有效性。实验结果证明ABC-ELM较ELM和BP神经网络具有更高的稳定性和预测精度。
英文摘要:
      Extreme learning machine (ELM) with random input weights and hidden biases may lead to unstable performance and low prediction accuracy. This paper proposes a new short-term load forecasting method based on artificial bee colony (ABC) algorithm and ELM (ABC-ELM). Firstly, historical load, meteorological factor and day of week are selected as input variables to build the ELM model. Secondly, optimal input weights and hidden biases of ELM are selected by ABC algorithm. Finally, the new model with optimized parameters is constructed. The real load date from a large city in China is applied to estimate the performance of proposed method. Experiment results show that the new method has higher stability and accuracy than ELM and BP neural networks.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd