• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
断路器操动状态声音辨识的优化算法的研究
Research of optimization algorithm for sound signal of circuit breaker operating state recognition
Received:April 29, 2016  Revised:June 09, 2016
DOI:
中文关键词: 断路器  故障诊断  源数估计  盲源分离  声音信号
英文关键词: electric circuit breaker  fault diagnosis  sources estimate  blind source separation  sound signal
基金项目:
Author NameAffiliationE-mail
ZHAO Shutao North China Electric Power University shutaozhao@163.com 
LI Mufeng* North China Electric Power University shangjufasheng@sina.com 
WANG Yaxiao North China Electric Power University ncepu_wyx@163.com 
SUN Huiwei North China Electric Power University shwncepu@163.com 
Hits: 1746
Download times: 518
中文摘要:
      为解决基于声信号分析的高压断路器在线诊断故障中外界环境干扰问题,提出了一种声音扰动信号辨识的盲源分离方法。首先利用改进的势函数法进行源数估计,然后通过集合经验模态分解(EEMD)算法得到多个IMF分量,重构形成符合聚类源数的多维信号,并利用拟牛顿法优化快速独立分量分析算法,实现声音信号的盲源分离;最后根据包络特征比对获取断路器状态辨识的合闸声音信号分量。实验结果证明,本文提出的方法能够在信源信息未知情况下,从混叠声音信号有效地提取断路器操动产生的有用声信号。
英文摘要:
      To solve the ambient interference in high voltage circuit breaker online diagnostics which is based on acoustic signal analysis, a blind source separation method is proposed for sound disturbance signal recognition. A improved potential function is used to estimate sources, and then ensemble empirical mode decomposition (EEMD) is applied into calculating several intrinsic mode functions (IMF), multidimensional signals are reconstructed in line with the number of sources. The sound signal blind source separation is completed by Fast Independent Component Analysis (FastICA) which is optimized by a quasi-Newton Method. The sound signal component of breaker closing state identification is obtained according envelope features comparison. The results show that, the proposed method can make the useful acoustic signal generated by the circuit breakers’ action extracted effectively from mixed voice signal while the information of sources is unknown.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd