• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
空间负荷预测中确定元胞负荷合理最大值的主成分分析法
A PCA Method for Ascertaining Maximal Value of Cellular Load in Spatial Load Forecasting
Received:June 30, 2016  Revised:August 02, 2016
DOI:
中文关键词: 空间负荷预测  城市电网  主成分分析  元胞  随机波动
英文关键词: spatial  load forecasting, urban  power network, principal  component analysis, cell, stochastic  volatility
基金项目:城市电网空间负荷预测的新型理论架构及其关键技术研究
Author NameAffiliationE-mail
XIAO Bai* School of Electrical Engineering,Northeast Dianli University xbxiaobai@126.com 
LI Ke Institute of economic and technical research of Henan electric power company like9@ha.sgcc.com.cn 
TIAN Chunzheng Institute of economic and technical research of Henan electric power company chunzheng_tian@163.com 
WANG Jing Institute of economic and technical research of Henan electric power company wangjing22@ha.sgcc.com.cn 
HE Xi State Grid Zhengzhou Power Supply Company heqian4@ha.sgcc.com.cn 
ZHANG Kai State Grid Zhengzhou Power Supply Company zhangkai16@ha.sgcc.com.cn 
Hits: 1955
Download times: 602
中文摘要:
      针对若直接使用元胞负荷实测数据中的年最大值进行城市电网空间负荷预测,则极有可能将测量、通信等误差造成的随机波动带入预测结果,而导致预测精度降低的问题,提出了利用主成分分析技术确定元胞负荷合理最大值的方法。该方法通过分析元胞负荷历史数据,利用主成分分析法将元胞负荷分解为表征元胞负荷总体信息的主成分分量和刻画随机波动的非主成分分量。通过剔除非主成分分量来抑制随机波动带来的不利影响,提取出主成分分量中的最大值作为元胞负荷合理最大值,并使用该最大值进行空间负荷预测。实例分析表明,该方法是有效的。
英文摘要:
      If using cellular load annual maximum of measured data directly in spatial load forecasting for urban power grids, errors caused by measurement, random fluctuations and communication are introduced to the predicted results, which led to reduce prediction accuracy. A method for ascertaining maximal value of cellular load in spatial load forecasting based on PCA is proposed. By analyzing the cellular load historical data and using PCA, the cellular load is decomposed into the principal components which can characterize cellular load general information and non-principal components which can characterize cellular load random fluctuations. By excluding non-principal components to inhibit the adverse effects caused by random fluctuations, and extract the principal components of cellular load as the reasonable maximum value of cellular load, and it is used for spatial load forecasting. Case study shows that the method is effective.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd