• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
促进风电消纳的需求响应与储热CHP联合优化模型
An Optimization Model Combining Demand Response And CHP With Heat Storage To Promote Accommodation Of Wind Power
Received:August 18, 2016  Revised:August 18, 2016
DOI:
中文关键词: 风电消纳  分时电价  储热  电热系统
英文关键词: wind power accommodation  demand response  heat storage  Electric heating system
基金项目:四川省电力电子节能技术与装备重点实验室项目(SZJJ2016-047)
Author NameAffiliationE-mail
Huang Peidong* School of Electrical Information,Xihua University lingweixiao@qq.com 
ZhanHongxia School of Electrical Information,Xihua University 3525806@qq.com 
PengGuangbin School of Electrical Information,Xihua University 1085586654@qq.com 
ZhangXi Nan’an Electric Power Company of Chongqing cqepxx@qq.com 
zhangning Nan’an Electric Power Company of Chongqing 270457981@qq.com 
longfei Nan’an Electric Power Company of Chongqing logsin@163.com 
Hits: 1746
Download times: 848
中文摘要:
      传统调度方式下系统调峰能力不足,风电弃风严重。先借助需求侧管理调控负荷的能力进行削峰填谷、降低负荷谷时段风电弃风,再在需求响应的引导下,通过对热电联产机组(CHP,combined heat and power)处储热环节的控制,解耦以热定电刚性约束,增强系统调峰能力。以系统煤耗量最小为优化目标,构建了包含需求响应、储热的电热联合优化调度模型。算例采用粒子群算法进行优化求解,模拟结果表明:本方法既能有效减少风电弃风,又能降低系统煤耗。
英文摘要:
      Under the traditional scheduling ,system load capacity is insufficient and abandoned wind seriously. Firstly, with the help of regulation load capacity, demand response can adjust user load shifting in load-peak period and reduce abandoned wind, then, under the guidance of demand response, control of the cogeneration unit heat storage link can decouple the electric heat of rigid constraints and improve the ability to load capacity. As the optimization goal of minimum system coal consumption quantity , construct include demand response, thermal storage optimization scheduling model of electro-thermal, and take the particle swarm algorithm to finish . The results of the example show the methods can effectively reduce wind wind, and can reduce the coal consumption of the system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd