• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于遗传优化的非侵入式居民负荷辨识算法
A Non-intrusive Residential Load Identification Algorithm Based on Genetic Optimization
Received:September 01, 2016  Revised:September 01, 2016
DOI:
中文关键词: 关 键 词:非侵入式  负荷监测  居民负荷  负荷辨识  遗传算法
英文关键词: non-intrusive, load  monitoring, residential  load, load  identification, genetic  optimization(GA)
基金项目:国家高技术研究发展计划(863计划)国家高技术研究发展计划(863计划)资助(2015AA050203);
Author NameAffiliationE-mail
QI Bing School of Electrical and Electronic Engineering,North China Electric Power University,Beijing,102206 qbing@ncepu.edu.cn 
HAN Lu* China free_hanlu@163.com 
Hits: 1784
Download times: 669
中文摘要:
      负荷在线监测能够为电网及用户提供即时的用电信息,是支撑能效管理和负荷预测工作的有效手段。传统监测方法采用侵入式设计,难以大范围推广应用,因此非侵入式负荷监测方法(NILM)具有重要研究意义。负荷辨识是非侵入式负荷监测的关键,本文以典型居民负荷的特性分析为基础,提出了一种基于遗传优化的非侵入式居民负荷辨识算法。该算法基于负荷设备的负荷特性,包括有功功率和电流有效值,利用三种不同的编码方法构造判断负荷运行状态的适应度函数,通过遗传算法寻优,最终确定居民负荷的工作状态,并通过实测数据进行验证。实验结果表明,该算法能够实现居民用户负荷状态的有效辨识,且算法收敛速度较快,准确度高。
英文摘要:
      Load online monitoring can provide real-time power consumption information to the grid and users. It is an effective method to support energy management and load forecasting work. Traditional method within intrusive mode is difficult to promote a wide range of applications, so non-intrusive load monitoring method (NILM) has important significance. Load identification is very important to NILM. Considering the residential load typical characteristic analysis, a non-intrusive residential load identification algorithm based on genetic optimization is proposed. The algorithm based on load characteristic, including active power and current effective value, uses three different encoding methods to structure fitness function, and ultimately determines the specific type of load by genetic optimization, and then the algorithm is verified effective by the actual sampling load data. Experimental results show that the algorithm can achieve residential load identification, and improves the speed of constriction and accuracy of the identification.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd