• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
利用小波能量特征的增长型自组织神经网络同调机组分群方法
Coherency identification using growth-oriented self-organizing neural networks and wavelet energy feature
Received:September 05, 2016  Revised:October 17, 2016
DOI:
中文关键词: 小波分析  多尺度空间能量  自组织神经网络  特征提取  同调机组
英文关键词: Wavelet analysis, Multi-scale spatial energy, Self-organizing neural network, Feature extraction, Coherent generator
基金项目:国家自然科学基金资助项目(51677071);国家电网公司科技项目(XT71-16-034);中央高校基本科研业务费专项资金资助项目(2016MS130)
Author NameAffiliationE-mail
YangYue* North China Electric Power University, Baoding m18233560363@163.com 
WangTao North China Electric Power University, Baoding wtwxx@126.com 
GuXueping North China Electric Power University, Baoding xpgu@ncepu.edu.cn 
Yue Xianlong North CHINA Electric Power University(BAODING) yue15230237661@163.com 
Xu Zhenhua State Grid Fujian Electric Power Research Institute 86108182@qq.com 
QiuLijun China Electric Power Research Institute qiulijun@epri.sgcc.com.cn 
Hits: 1740
Download times: 1012
中文摘要:
      本文提出了一种利用小波变换多尺度空间能量分布特征的自组织神经网络同调机组分群方法。首先改进了同调机群识别判据,然后利用小波变换的多尺度空间能量分布特征提取方法对机组功角摇摆曲线提取特征,将时域特征、频域特征及小波能量特征构成的综合向量作为增长型自组织神经网络的输入,通过调节阈值λ,得出不同精度的分群结果。最后在IEEE-39节点系统上对只考虑时频域特征和同时考虑小波能量特征、时频域特征的同调机组识别结果进行了对比分析,最终表明同时考虑小波能量特征、时频域特征的分群结果具有更高准确性。
英文摘要:
      This paper proposes a novel method to identify coherent generator groups using wavelet transform multi-scale space energy distribution feather and improved self-organizing neural networks. Firstly, the identification criteria of coherent generator groups are defined and then the features of the unit power angle rocking curve are extracted using multi-scale spatial energy wavelet distribution method. Furthermore, the time domain, frequency domain and wavelet energy feature vectors are used as inputs of growth-oriented self-organizing neural networks to obtain grouping of different precision by adjusting the threshold λ. Finally, the recognition results on the IEEE-39 bus system, considering the features of only time-frequency domain and both the wavelet energy and time-frequency domain, are compared. The results show that the proposed method taking into account the feathers of both the wavelet energy and time-frequency domain can obtain higher accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd