• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
(15期已排版)基于代价敏感组合核相关向量机的电力变压器 故障诊断
Transformer Fault Diagnosis Based on Cost-Sensitive Multi-Kernel Learning Relevance Vector Machine
Received:September 05, 2016  Revised:September 05, 2016
DOI:
中文关键词: 电力变压器  组合核相关向量机  参数优化  代价敏感学习  DGA  故障诊断
英文关键词: power transformer  MKL-RVM  parameter optimization  cost-sensitive learning  DGA  fault diagnosis
基金项目:
Author NameAffiliationE-mail
yang fei bao* Southwest Jiaotong University mryang2013@163.com 
Hits: 2524
Download times: 611
中文摘要:
      摘要:组合核相关向量机可以融合多个特征空间,输出变压器隶属于各种状态的概率。本文将代价敏感机制融入组合核相关向量机,构建了代价敏感组合核相关向量机,该算法以误诊断代价最小为目标,按贝叶斯风险理论预测样本的故障类别,克服了传统诊断方法未考虑误诊断代价差异的问题。针对代价敏感组合核相关向量机核函数参数选取需人为设定的问题,本文采用K折交叉验证和粒子群算法相结合的方法寻优核函数参数。基于油中溶解气体分析数据的诊断实例表明,与BP神经网络,支持向量机及组合核相关向量机算法相比,代价敏感组合核相关向量机不仅具有较高的诊断正确率,而且具有较低的误诊断代价。
英文摘要:
      Abstract: Multi-Kernel Learning Relevance Vector Machine can integrate multiple feature spaces, and outputs the probability belonging to each state. In this paper, cost-sensitive mechanism was introduced into the Multi-Kernel Learning Relevance Vector Machine, and constructed the Cost-Sensitive Multi-Kernel Learning Relevance Vector Machine, the algorithm is based on Bayesian risk theory to predict the fault category of samples, reaching the goal of minimum cost of misdiagnosis, and overcame the problem of not taking account of the difference cost of misdiagnosis. To solve the problem of its kernel function parameters need to be set artificially, K-fold Cross Validation combined Particle Swarm Optimization was adapted to optimize the kernel function parameters. Case analysis based on dissolved gas analysis data shows that CS-MKL-RVM not only has higher diagnosis accuracy, but also has lowest misdiagnosis cost, when compared with BP Neural Network, Support Vector Machine and Multi-Kernel Learning Relevance Vector Machine.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd