• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于振动分析法的变压器故障分类和识别
The Classification and Recognition of Transformer Fault Based on Vibration Analysis
Received:September 29, 2016  Revised:October 19, 2016
DOI:
中文关键词: 振动分析法  集合经验模式分解  特征矢量  主成分分析  K近邻法
英文关键词: vibration  analysis, ensemble  empirical Mode  decomposition, feature  vector, principal  component analysis, K-Nearest  Neighbor
基金项目:国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
Xia Yujian Center of Electrical Electronic Technology,Shanghai Jiao Tong University xiayujian@sjtu.edu.cn 
Li Min Guangan Power Supply Company,Sichuan Electric Power Co,Ltd,State Grid Corporation of China wangxin26@sjtu.edu.cn 
Chen Guo Guangan Power Supply Company,Sichuan Electric Power Co,Ltd,State Grid Corporation of China wangxin26@sjtu.edu.cn 
Shi Tongchun Guangan Power Supply Company,Sichuan Electric Power Co,Ltd,State Grid Corporation of China wangxin26@sjtu.edu.cn 
Shen Daqian Guangan Power Supply Company,Sichuan Electric Power Co,Ltd,State Grid Corporation of China wangxin26@sjtu.edu.cn 
Wang Xin* Center of Electrical Electronic Technology,Shanghai Jiao Tong University wangxin26@sjtu.edu.cn 
Hits: 2287
Download times: 856
中文摘要:
      为了实现变压器故障的直观分类和故障识别,在分析变压器振动机理的基础上,本文提出一种基于主成分分析和KNN分类识别的变压器故障检测方法。该方法采用EMMD(集合经验模式分解)方法提取变压器不同运行状态下振动信号的特征矢量,将该特征矢量通过主成分分析投影到直观的二维图像中。利用KNN分类识别实现故障分类和自动故障识别。试验结果表明,该方法可以实现对变压器正常状态、绕组变形、铁芯故障3种状态直观分类,并对测试样本进行快速的自动模式识别。
英文摘要:
      In order to achieve transformer fault of fault identification and classification intuitively, this paper proposes a method of transformer fault detection based on PCA (principal component analysis) and KNN (K-Nearest Neighbor) classification and recognition. In this paper, vibration signals from different transformer states are decomposed by EMMD (Ensemble Empirical Mode Decomposition) to abstract feature vectors which are projected onto a visual two-dimensional image. KNN classification is applied to verify fault classification and achieve automatic fault identification. Experimental results show that, this method can achieve classification of a normal state of transformer,winding deformation and the core fault respectively, to realize automatically pattern recognition of test sample.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd