• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于粒子滤波与EEMD的低频振荡模式识别方法研究
Pattern Recognition Research on Low Frequency Oscillation Based on Particle Filter and EEMD
Received:January 19, 2017  Revised:January 19, 2017
DOI:
中文关键词: 粒子滤波  EEMD  非线性  非高斯  去噪  低频振荡
英文关键词: particle filter  EEMD  nonlinear  non-Gaussian  denoising  low frequency oscillation
基金项目:国家自然科学基金项目( 51507014);湖南省自然科学基金项目(2015JJ4002)
Author NameAffiliationE-mail
Zeng Linjun* Changsha University of Science and Technology 1832577874@qq.com 
Xiao Hui Changsha University of Science and Technology 978619963@qq.com 
Jiang Wei Changsha University of Science and Technology 1399707946@qq.com 
Deng Shishen State Grid Hunan Zhuzhou County power supply company 529545944@qq.com 
Yang Junchen State Grid Fujian Longhai power supply company 272297204@qq.com 
Hits: 1777
Download times: 652
中文摘要:
      为克服传统方法对非线性非高斯系统信号中噪声处理的缺点,本文提出一种基于粒子滤波算法与改进的EMD分解—EEMD分解法相结合的新方法。本文所提方法首先利用粒子滤波将非线性非高斯系统的初始信号的噪声去除,减少了噪声对后续操作的影响,再采用EEMD分解对去噪后的信号进行分解得到本征模态分量IMF,进而对本征模态分量IMF计算出瞬时频率,从而得出低频振荡的模式。通过算例仿真分析表明本方法的可行性及有效性,并通过与Prony分析算法得到的结果进行了对比,验证了本方法的正确性。为电力系统低频振荡处理非线性非高斯系统信号提供了一种新的途径和方法。
英文摘要:
      In order to overcome the shortcomings of traditional methods for noise processing in non-linear non-Gaussian systems, this paper presents a new method based on particle filter and improved EMD-EEMD decomposition. In this paper, the noise of the non-linear non-Gaussian system is removed by the particle filter, and the influence of noise on the subsequent operation is reduced. Then, the EEMD decomposition is used to decompose the denoised signal, And then the instantaneous frequency is calculated for the intrinsic mode component IMF, and the mode of low frequency oscillation is obtained. The feasibility and effectiveness of the proposed method are demonstrated by simulation analysis. The results are compared with the results obtained by the Prony analysis algorithm, which verifies the correctness of the method,which provides a new way and method for the non-linear non-Gaussian system signal processing in power system low-frequency oscillation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd