• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于ELM与DBSCAN的微电网不良数据检测方法
A microgrid bad data detection method based on ELM and DBSCAN
Received:April 25, 2017  Revised:April 25, 2017
DOI:
中文关键词: 不良数据检测  微电网  极限学习机  DBSCAN  数据挖掘
英文关键词: bad data detection, microgrid, extreme learning machine, DBSCAN, data mining
基金项目:
Author NameAffiliationE-mail
Xiong Xiaoqi* School of electrical engineering,Wuhan University 18627756609@163.com 
Huang Heming School of electrical engineering,Wuhan University hhm_eec08@whu.edu.cn 
Hao Liangliang School of electrical engineering,Wuhan University liangliang.hao@whu.edu.cn 
Liu Fei School of electrical engineering,Wuhan University lf_dyj@whu.edu.cn 
Zha Xiaoming School of electrical engineering,Wuhan University xmzha@whu.edu.cn 
Hits: 2074
Download times: 893
中文摘要:
      不良数据检测可以为微电网运行决策提供可靠的数据依据。由于微电网运行模式切换频繁且系统解析模型难以建立,传统基于状态估计的不良数据检测方法尚未得以应用。本文利用极限学习机(ELM)对微电网历史数据进行学习以提取数据特征;进而利用DBSCAN聚类算法分析特征量以识别不良数据,提出了一种基于ELM和DBSCAN的微电网不良数据检测方法。利用一台四端环形直流微电网样机的历史运行数据构建仿真算例,验证了所提方法的有效性;并与多种常用的数据挖掘算法进行对比,结果表明 ELM+DBSCAN在算法性能与检测效果上均具有优越性。
英文摘要:
      Bad data detection can provide reliable data dependence for microgrid operation decision-making. Due to the frequency of operation mode switching and difficulties of microgrid modeling analysis, traditional bad data detection method based on state evaluation has not been applied to microgrid. This paper utilizes extreme learning machine (ELM) to learn the historical data of microgrid for purpose of extracting the data feature; and detects bad data by DBSCAN clustering algorithm analyzing the feature. A bad data detection method based on ELM and DBSCAN is proposed. Taking advantage of the historical operation data of a four-terminal DC microgrid prototype, the simulation scenario is designed and result verifies the efficiency of this method. In addition, this paper contrasts it with several data mining algorithm, and it is indicated that ELM+DBSCAN are of high superiority on both algorithm performance and detection effects.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd