• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于随机森林的油纸绝缘老化阶段评估
Aging Stage Evaluation of Oil - paper Insulation Based on Random Forest
Received:May 17, 2017  Revised:May 21, 2017
DOI:
中文关键词: 局部放电信号  EMD-SVD特征  随机森林  油纸绝缘热老化识别
英文关键词: partial  discharge signal, EMD-SVD  feature, random  forest, oilpaper  insulation thermal  aging identification
基金项目:十三五国家重点研发专项(2016YFC0801808);中国博士后科学基金(2013M541755)。
Author NameAffiliationE-mail
Zhang Jianwen* School of Electrical and Power Engineering China University of Mining and Technology 394143013@qq.com 
Wang Man School of Electrical and Power Engineering China University of Mining and Technology wangman92@126.com 
Xie Hao School of Electrical and Power Engineering China University of Mining and Technology 1783668379@qq.com 
Yan Jiaming School of Electrical and Power Engineering China University of Mining and Technology 15212686889@126.com 
Zhang Huanyu School of Electrical and Power Engineering China University of Mining and Technology 876147682@qq.com 
Hits: 1735
Download times: 719
中文摘要:
      为了更准确地评估变压器油纸绝缘老化阶段,提出了一种基于EMD-SVD特征和随机森林分类器相结合的识别方法。搭建实验平台采集得到气隙缺陷样本的不同热老化阶段局部放电信号,去噪处理后对信号进行EMD-SVD特征提取得到相应局部放电信号特征量,并分别利用随机森林分类器与传统分类器BP神经网络和支持向量机对EMD-SVD特征进行分类识别。结果显示随机森林分类器识别效果优于传统分类器,对于提取的油纸绝缘局部放电信号EMD-SVD特征,随机森林分类器分类能力更强。分析表明首次将EMD-SVD特征与随机森林分类器相结合应用在油纸绝缘热老化阶段识别方面能够取得更好的效果。
英文摘要:
      This paper proposes the diagnostic method which is based on EMD-SVD feature extraction and random forest classifier in order to more accurately assess the transformer oil paper insulation aging stage. The paper Set up the experimental platform to collect air gap defect samples of different thermal aging stages partial discharge signals and obtained partial discharge signal characteristics after denoising processing and EMD-SVD feature extraction. The EMD-SVD feature are diagnosed by random forest classifier with the traditional BP neural network classifier and support vector machine respectively, and the results show that random forest classifier recognition result is superior to the traditional classifier. Compared with the traditional classifier, random forest classifier classification ability is better for EMD-SVD characteristics classification. The paper demonstrates that the EMD-SVD features combined with random forest classifier applied in oil paper insulation thermal aging phase recognition effect is better.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd