• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑负荷不确定性的多目标交直流系统无功优化
Multi-objective reactive power optimization of hybrid AC/DC power system considering load uncertainty
Received:May 27, 2017  Revised:May 27, 2017
DOI:
中文关键词: 负荷不确定性  多目标  交直流系统  无功优化  内点法  遗传算法
英文关键词: load uncertainty, multi-objective, hybrid AC/DC power system, reactive power optimization, interior point method, genetic algorithm
基金项目:国家自然科学基金项目( 重点项目)51307104
Author NameAffiliationE-mail
fanhong Shanghai University of Electric Power 429538759@qq.com 
jiangyanbin* Shanghai University of Electric Power jyb1107040332@163.com 
Hits: 1991
Download times: 753
中文摘要:
      提出了一种考虑负荷不确定性的多目标交直流系统无功优化方法,研究负荷模型的不确定性对交直流系统无功优化的影响。本文将系统有功损耗最小、系统电压稳定裕度最大作为目标函数,基于负荷误差的正态分布特征,并利用二层规划理论方法,建立考虑负荷不确定性的多目标交直流系统无功优化数学模型。针对交直流无功优化非线性、多变量、多约束的特点,采用内点法和遗传算法相结合的混合优化算法求解上层模型,下层模型采用实数编码的改进遗传算法求解。采用基于IEEE30标准节点改进的交直流算例对提出的方法进行验证,结果验证了本文提出方法的可行性及有效性。
英文摘要:
      This paper presents a method of multi-objective reactive power optimization of hybrid AC/DC power system considering load uncertainty to study the influence of load uncertainty to reactive power optimization. The objectives are minimization of active power loss and maximization of voltage stability margin, load inaccuracy based on the normal random distribution is considered in the modal. The reactive optimization is nonlinear, multivariate and multi-constraint, a hybrid algorithm of interior point method and genetic algorithm is adopted to solve the upper optimization modal, and an improved genetic algorithm is adopted to solve the lower optimization modal. The proposed method is tested in a modified hybrid AC/DC power system based on the IEEE 30-bus system. The results demonstrate that the proposed method is feasible and effective.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd