• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于GA的光伏MPPT变加速扰动法的研究
Research on MPPT of photovoltaic system by variable acceleration disturbance method based on Genetic Algorithm
Received:May 27, 2017  Revised:June 30, 2017
DOI:
中文关键词: 光伏系统  MPPT  遗传算法  变加速扰动
英文关键词: photovoltaic system,MPPT,genetic algorithm,acceleration disturbance
基金项目:国家自然科学基金(61673165);湖南省自然科学基金资助项目(2017JJ4024);湖南省重点实验室(2016TP1018)
Author NameAffiliationE-mail
lishengqing Hunan University of Technology College lsq1961@sohu.com 
wuwenfeng* Hunan University of Technology College 1596468590@qq.com 
zhangyuwen Hunan University of Technology College nsj0713@163.com 
mingyao Hunan University of Technology College mingyao003@163.com 
Hits: 1433
Download times: 695
中文摘要:
      光伏发电的效益限制了其大规模发展。为提高光伏发电效益,通过分析光伏电池的数学模型和优化MPPT控制策略,提出一种基于遗传算法的光伏MPPT加速扰动法。比较变步长与变加速扰动法的差异,通过数学表达式证明了变加速扰动法的加速过程。为进一步提高跟踪精度,减少系统的跟踪时间,引入遗传算法用于建立初始搜索区间。最后,在Matlab / Simulink软件平台搭建仿真模型。仿真实验表明,该方法可以在外界光强发生变化时实现MPP的快速、稳定跟踪。
英文摘要:
      The benefits of PV have limited its large-scale development. In order to improve the efficiency of photovoltaic power generation, an PV MPPT accelerating perturbation method based on genetic algorithm is proposed .The difference between the variable step and the accelerating perturbation method is compared, and the acceleration process of the variable perturbation method is verified by the mathematical formula. To further improve the tracking accuracy and reduce the tracking time of the system, the genetic algorithm is used to establish the initial search range. Finally, the simulation model is built in Matlab/ Simulink software platform, and the correctness of the method is verified by simulation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd