• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于SAAFSA优化加权模糊聚类算法的变压器故障诊断
Transformer fault diagnosis based on weighted fuzzy clustering algorithm improved by SAAFSA
Received:June 10, 2017  Revised:June 10, 2017
DOI:
中文关键词: 加权模糊聚类  模拟退火  人工鱼群算法  聚类中心  故障诊断
英文关键词: weighted fuzzy clustering algorithm  simulated annealing  artificial fish swarm algorithm  initial cluster center  fault diagnosis
基金项目:
Author NameAffiliationE-mail
SHI Liping School of Electrical and Power Engineering,China University of Mining and Technology shiliping98@126.com 
SONG Chaopeng* School of Electrical and Power Engineering,China University of Mining and Technology 625062994@qq.com 
LI Mingze School of Electrical and Power Engineering,China University of Mining and Technology 1625307921@qq.com 
CHEN Suqian School of Electrical and Power Engineering,China University of Mining and Technology 1297074328@qq.com 
LI Jiaxin School of Electrical and Power Engineering,China University of Mining and Technology 1196429975@qq.com 
Hits: 2103
Download times: 676
中文摘要:
      针对加权模糊聚类算法(WFCM)应用于变压器DGA分析时存在收敛速度慢、对初始值敏感的问题,提出了一种改进人工鱼群优化加权模糊聚类算法(SAAFSA-WFCM)的变压器故障诊断方法。该方法利用模拟退火算法(SA)来改进人工鱼群算法(AFSA)以求取最佳初始聚类中心,在发挥AFSA优异的全局寻优能力的同时,利用SA的概率性突跳搜索机制对AFSA实施局部优化,避免了AFSA搜索陷入局部极值。WFCM算法以得到的最佳初始聚类中心为初值进行迭代运算,最终求得更接近实际位置的聚类中心,克服了WFCM易受初值影响的缺陷,加快了收敛速度。仿真与实例分析表明,该方法可有效应用于变压器的故障诊断,并有着较高的诊断正确率和诊断效率。
英文摘要:
      Aiming at the problem of weighted fuzzy clustering algorithm (WFCM) that the convergence speed is slow and sensitive to the initial value in transformer DGA analysis, a transformer fault diagnostic method based on weighted fuzzy clustering algorithm optimized by improved artificial fish swarm algorithm (SAAFSA-WFCM) is proposed. This method uses the artificial fish swarm algorithm (AFSA) improved by the probabilistic kick search mechanism of the simulated annealing (SA) to obtains the best initial clustering center, it takes advantage of the global optimization of AFSA and avoids getting into the local maximum through local optimization by the use of SA. By using the obtained best initial clustering center as the initiatory value, WFCM algorithm finds the final cluster center which is getting closer to the actual location through iterative computation, overcoming the shortcomings of traditional WFCM algorithm which is sensitive to the initial value, and accelerating the convergence speed. Simulation and case analysis show that this method has higher accuracy and efficiency when applied to power transformer faults diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd