• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑V2G下电动汽车与风电协同调度的多目标优化策略
Multi-objective optimization strategy for cooperative scheduling of electric vehicles and wind farms under V2G
Received:July 03, 2017  Revised:July 03, 2017
DOI:
中文关键词: 电动汽车  风电并网  协同调度  多目标优化  非线性遗传算法
英文关键词: electric vehicle  wind power grid connection  cooperative scheduling  multi objective optimization  nonlinear genetic algorithm
基金项目:国家自然科学基金项目(51607111);中国工程院2016年国家战略咨询项目(2016-XZ-29-02)
Author NameAffiliationE-mail
zhangna Shanghai University of Electric Power zhangna06@163.com 
tangzhong* Shanghai University of Electric Power tangzhong64@163.com 
Hits: 1784
Download times: 616
中文摘要:
      通过建立电动汽车及风电参与的负荷平抑、负荷峰谷差和电动汽车充放电费用的多目标模型,考虑电动汽车电池的可用容量和充放电功率等约束条件的情况,采用基本遗传算法和非线性规划遗传算法这两种不同算法,分析考虑负荷峰谷差对平抑负荷波动和提高电动汽车用户收益产生的影响,并分别对所产生结果进行对比。最后,通过算例分析验证结果表明,通过在分时电价合理的安排电动汽车充放电下采用非线性规划遗传算法并考虑负荷峰谷差可使多目标模型更加优化,并给出非线性遗传算法求解多目标模型时的结果曲线图。
英文摘要:
      The multi-objective model of the electric vehicle and wind power in the load control, stabilize the ?peak and valley difference of load and electric vehicle charging and discharging cost, considering the electric vehicle battery available capacity and charge discharge power constraints, and considering the basic genetic algorithm and genetic algorithm for nonlinear programming of the two different algorithms, to analyze considering the influence of peak load difference to stabilize of the load fluctuation and improve the electric vehicle users return, and the generated results are compared respectively. Finally, through the example analysis results show that through the reasonable price in the electric vehicle charging and discharging and genetic algorithm for nonlinear programming and considering the peak and valley load difference can make the multi-objective model more optimization, and presents a genetic algorithm for solving multi-objective nonlinear model results curve.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd