• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于聚类融合技术的电力用户负荷模式提取方法
Electricity customer load pattern extraction based on clustering ensemble approaches
Received:July 24, 2017  Revised:August 01, 2017
DOI:
中文关键词: 聚类融合  电力用户  负荷模式  模式提取  评价指标
英文关键词: clustering ensemble, power customers, load pattern, pattern extraction, evaluation indicator
基金项目:中央高校基本科研业务费专项资金(2016MS08、2016MS09)
Author NameAffiliationE-mail
Li Yujiao* North China Electric Power University liyujiao@ncepu.edu.cn 
Huang Qingping North China Electric Power University qingping_huang@ncepu.edu.cn 
Liu Song North China Electric Power University liusong@ncepu.edu.cn 
Chen Yu North China Electric Power University chenyu1224@ncepu.edu.cn 
Liu Peng North China Electric Power University liupeng@ncepu.edu.cn 
Hits: 1760
Download times: 652
中文摘要:
      针对电力大数据背景下智能用户负荷模式提取的可靠性不高且传统单一聚类算法聚类结果不稳定的问题,提出一种基于主成分分析与聚类融合相结合的电力用户负荷模式提取方法。首先,对负荷数据进行预处理,通过主成分分析法减少特征间分类信息冗余实现高维特征的降维。然后,用四种聚类方法分别对降维后的数据集进行聚类分析,得到具有差异性的聚类成员。最后,利用共识矩阵对所得聚类成员进行聚类融合,得到优于单一聚类算法的最终聚类结果。通过电网实际用电数据验证了所提负荷模式提取方法能够提高聚类准确率并降低计算复杂性,并用有效性指标Silhouette对最终聚类结果进行评价。
英文摘要:
      To solve the problem that the clustering results of traditional single clustering algorithm is unsteady and the reliability of load pattern extraction is low, a new method of pattern classification based on the technology of principal component analysis and clustering ensemble approaches is presented. First, principal component analysis is used in the process of data preprocessing to reduce information redundancy of high-dimension feature vectors. Then, different clustering members are obtained by four cluster analyses of feature vectors. Finally, the clustering members are combined with the Co-association Matrix and the clustering result is better than single clustering algorithm. The clustering results of principal component analysis and ensemble clustering algorithm achieved by electricity consumption data show that it can effectively improve the accuracy of clustering and reduce computation complexity. The evaluation indicator of Silhouette is used to assess the clusters of load profiles.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd