• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于负荷空间划分的非侵入式辨识算法*
A non-intrusive Identification Algorithm Based on Partition of the Load Space
Received:July 24, 2017  Revised:July 24, 2017
DOI:
中文关键词: 关 键 词:非侵入式负荷监测  特征降维  最小平方误差算法  判别函数  负荷空间划分
英文关键词: non-intrusive  load monitoring (NILM), feature  dimension reduction, least  mean square  error, discriminant  function, partition  of the  load space
基金项目:国家重点研发计划项目课题资助(2016YFB0901104);中央高校基本科研业务费专项资金项(2016MS13)
Author NameAffiliationE-mail
QI Bing School of Electrical and Electronic Engineering,North China Electric Power University,Beijing,102206 1289258043@qq.com 
HAN Lu* China free_hanlu@163.com 
Hits: 1593
Download times: 551
中文摘要:
      针对传统的侵入式监测系统在设备投入、复杂性以及扩展性上存在的缺陷,本文以非侵入采集机制获取的负荷数据为基础,研究了一种基于负荷空间划分的负荷辨识方法。首先对5种典型负荷的10种特征进行降维处理,得到最佳辨识特征;利用最小平方误差算法构建判别函数,划分5种负荷的特征空间;利用负荷特征空间交叉的方法,实现负荷的辨识。本文利用实际采集的用电数据验证了该算法的有效性,且通过特征降维处理提高了算法的运算效率,通过负荷分离提高了辨识准确性。
英文摘要:
      Aiming at the defects of traditional intrusive monitoring system in equipment input, complexity and expansibility, this paper discusses a non-intrusive load identification algorithm based on partition of the feature space. It uses K-L transform to reduce the dimension of the 10 typical features of the five typical loads, and obtains the best identification feature; It uses the least squares error algorithm to construct the discriminant function and divides the feature space of the five loads; It uses the load feature space intersection method to achieve load identification. The power consumption data acquired in the real world is used to prove that the algorithm is able to effectively achieve the load decomposition and accurately recognize the status of loads. In addition. The feature dimensionality reduction improves the efficiency of the algorithm, and the load separation improves the recognition accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd