• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
计及不确定性的用户互动式运行斯坦伯格博弈模型
The Stackerberg game model of user interactive operation considering uncertainty
Received:August 31, 2017  Revised:August 31, 2017
DOI:
中文关键词: 斯坦伯格博弈  双层规划  需求决策  遗传算法
英文关键词: Stackerberg game, bilevel programming, genetic algorithm  power load planning
基金项目:国家自然基金资助项目(71203137) (71403163)
Author NameAffiliationE-mail
Huang Haitao College of Electric Power Engineering,Shanghai University of Electric Power 929816935@qq.com 
Li Xiaoyu* College of Electric Power Engineering,Shanghai University of Electric Power lixiaoyuzui@qq.com 
Zou Long State Grid Anhui Electric Power Corporation Fuyang Power Supply Company zoulong6666@163.com 
Wan Wangjing State Grid Anhui Electric Power Corporation Fuyang Power Supply Company wwjlc1980727@163.com 
He Min State Grid Gansu Electric Power Company lixiaoyuzui@sina.com 
Hits: 2510
Download times: 2466
中文摘要:
      电力公司的策略决策行为是实现电力行业市场化和发挥需求响应潜力的重要环节。为制定科学合理的策略决策行为,应用斯坦伯格博弈论理论,构建用户互动式运行的双层规划模型。模型中的上下主从博弈关系,能够体现出售电商和需求侧双方策略决策行为之间的互动性。其中,上层考虑运行中可能出现的不确定性因素和需求决策行为的影响,应用条件风险价值方法CVar和非线性随机规划理论,构建了计及多种因素的售电商行为策略决策模型;下层引入需求侧舒适度,并考虑售电商行为策略决策影响,构建了用户用电需求决策行为模型。最后,算例采用双层遗传算法优化决策行为,验证了该模型在反映用户互动行为与风险管理对售电商行为策略决策的影响方面具有较好的指导意义。
英文摘要:
      The strategic decision-making behavior of the electricity retailer is an important part of realizing the market power of the power industry and realizing the demand response. This paper builds a user interactive operation bilevel programming model based on Stackelberg game theory according to retailer’s strategic decision making behavior. The interaction between the upper and lower main in the model can reflect the interaction between the retailer and the demand side. The upper part builds a retailers’ strategic decision making behavior considering risk management based on CVar and nonlinear stochastic programming theory; the lower part introduces the comfort of consumers and builds a user demand decision behavior model considering the impact of retailer’s strategic decision. Finally, the algorithm uses the bilevel genetic algorithm to optimize the decision-making behavior, which proves that the model has a good guiding significance in reflecting the influence of user interaction behavior and risk management on the decision-making of retailer" behavior strategy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd