• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于鲸鱼优化算法的无功优化调度
Whale optimization algorithm based optimal reactive power dispatch
Received:December 03, 2017  Revised:December 03, 2017
DOI:
中文关键词: 无功优化  鲸鱼优化算法  有功功率损耗  单因素方差分析法#$NL中国分类号:TM721 文献标识码:A 文章编号:1001-1390(2017)00-0000-00
英文关键词: power  system reactive  power optimization, whale  optimization algorithm, real  active power  loss, analysis  of variance
基金项目:
Author NameAffiliationE-mail
Teng Deyun* School of Electric Engineering Information,Sichuan University 1938654044@qq.com 
Teng Huan School of Electric Engineering Information,Sichuan University 13308027191@163.com 
Pan Chen School of Electric Engineering Information,Sichuan University 2425798862@qq.com 
Liu Xin School of Electric Engineering Information,Sichuan University 1347582743@qq.com 
Hits: 2487
Download times: 759
中文摘要:
      针对目前电力系统中的无功优化问题尚缺乏一种能兼顾求解的高效性与全局搜索最优性的方法,本文将一种新的启发式算法--鲸鱼优化算法(WOA)运用到电网无功优化调度中,以系统有功功率损耗最低为目标函数,通过引入惩罚函数建立无功优化模型,对IEEE-14节点系统与IEEE-30节点系统进行仿真,并利用单因素方差分析法(One-way ANOVA)将所得结果与之前的粒子群优化算法(PSO)及引入加速度系数的时变粒子群优化(PSO-TVAC)进行比较,研究表明WOA算法在迭代次数、搜索能力及收敛问题上的潜力,并证明了在解决电力系统无功优化问题上的鲁棒性和有效性,同时也为解决非线性约束问题提供了新途径。
英文摘要:
      In order to solve the problem of reactive power optimization in power system, which is still a lack of a method that takes into account both the efficiency of optimization and the global search optimality. In this paper, a new heuristic algorithm called whale optimization algorithm(WOA) is applied to grid reactive power optimization, taking the lowest active power loss of the system as the objective function, a reactive power optimization model was established by introducing a penalty function to simulate the IEEE 14-bus system and the IEEE 30-bus system, and one-way ANOVA was used to compare the results of particle swarm optimization (PSO) algorithm and the particle swarm optimization with time varying acceleration coefficients (PSO-TVAC). The results show that the WOA algorithm has better performance in iteration times. search ability and convergence potential, it also proves the robustness and effectiveness in resolving the reactive power optimization problem of power system, and also provides a new way to solve the nonlinear constraint problem.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd