• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于EEMD-BP神经网络的电采暖配电变压器短期负荷预测
Short-term Electric Heating Power Load Forecasting Based onEEMD-BP Neuml Network Combined Forecasting Method
Received:December 04, 2017  Revised:December 04, 2017
DOI:
中文关键词: 电采暖配电变压器短期负荷预测  集成经验模态分解  BP神经网络  组合预测模型
英文关键词: short-term electric heating distribution transformer load in the distribution network forecast  ensemble empirical mode decomposition  Back Propagation (BP) neural network  combined forecasting method
基金项目:国家电网公司科技项目资助(电采暖装置负荷特性研究与电采暖负荷接入对配电网影响研究, 52022316001B)。
Author NameAffiliationE-mail
LI Xiang-long Beijing Electric Power Research Institute,Fengtai District,Beijing,,China 15901212419@163.com 
ZHANG Bao-qun Beijing Electric Power Research Institute,Fengtai District,Beijing,,China 123.gc@163.com 
ZHANG Yu China Agricultural University,Haidian District,Beijing excellentyu@cau.edu.cn 
SUN Qin-fei Beijing Electric Power Research Institute,Fengtai District,Beijing,,China sunney1987@163.com 
MENG Ying Beijing Electric Power Research Institute,Fengtai District,Beijing,,China 13811051167@126.com 
ZHAO Feng-zhan* China Agricultural University,Haidian District,Beijing zhaofz@cau.edu.cn 
Hits: 2021
Download times: 630
中文摘要:
      为了快速准确地预测含高比例电采暖设备的配电变压器的短期负荷,提出了基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)及BP神经网络算法组合的电采暖配电变压器短期负荷预测方法,该方法考虑了采暖日天气类型、采暖日温度等环境条件对居民采暖行为的影响。首先运用EEMD方法将日负荷序列分解成4组频率由低至高的分量序列及1组剩余分量序列,再将各分量序列及温度数据、气象数据输入BP神经网络中进行预测,最后各个预测分量相加得到最终的预测结果。将该方法应用于北京地区冬季“煤改电”工程中,对某个含高比例电采暖负荷的配电变压器进行短期预测,算例表明,EEMD-BP组合预测方法能够有效减小负荷预测误差。
英文摘要:
      In order to forecast short-term electric heating distribution transformer load quickly and accurately, a method in which the Back Propagation (BP) neural network algorithm is intelligently combined with ensemble empirical mode decomposition(EEMD) is proposed considering the influence of weather type and temperature on the residents' heating behavior. Firstly, the daily load sequence is decomposed into four series of low-to-high frequency sub-sequences and a remnant sub-sequence by EEMD method. Secondly, each sub-sequence, temperature data and meteorological data are input into the BP neural network to predict. Finally, sum the predicted components to obtain the final prediction result. EEMD-BP combined method is applied in Coal-to-Electricity Project and forecast a certain distribution network load with a large proportion of electric heating. Simulation results show that EEMD-BP combined forecasting method can effectively reduce the prediction error.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd