• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于小波设计和数据挖掘算法协同训练的非侵入式负载识别
Non - intrusive load monitoring based on co-training of wavelet design and data mining algorithm
Received:January 04, 2018  Revised:January 06, 2018
DOI:
中文关键词: 非侵入式负荷识别  小波分析  决策树算法  k近邻算法  协同训练
英文关键词: Non-intrusive load monitoring, Wavelet analysis, Decision tree, k-Nearest Neighbor, co-training
基金项目:
Author NameAffiliationE-mail
ZhangZhiqiang School of Electrical and Information Engineering, Sichuan University hiway_scu@126.com 
ZhangZhiqiang* School of Electrical and Information Engineering, Sichuan University 15695252183@163.com 
Yuan Yue School of Electrical and Information Engineering, Sichuan University 1427288652@qq.com 
Liu Zhifan School of Electrical and Information Engineering, Sichuan University 281781635@qq.com 
Liao Minfang (School of Electrical and Information Engineering, Sichuan University 625271864@qq.com 
Hits: 1750
Download times: 686
中文摘要:
      居民用电信息细化对于规划居民电器使用和降低电能消耗具有重要的意义。本文在非侵入式负载识别技术的基础上,提出了一种利用数据挖掘算法进行协同训练的方法,小波设计用于提取家庭常用电器的开、关暂态特性的特征信息,利用小波的能量系数作为特征值,使用k近邻算法和决策树算法协同训练分类出负载样本,对测试集进行了算法验证实验,在简化了计算复杂性的基础上获得了更高的识别精度,克服了一对余算法在分类真实负类事件上存在的缺陷,为用电可视化服务研究工作打下基础。
英文摘要:
      The decomposed information of power consumption of household appliances is meaningful for scheduling the appliances and the reduction in home energy use. This paper validates the effectiveness of implementing co-testing in NILM. Wavelet design is used to extract features from the switching transients of loads. Using the energy coefficient of wavelet as the eigenvalue, k-NN algorithm and DT model were used to co-train the load samples. This paper has carried on the algorithmic verification experiment, has obtained the higher identification accuracy on the basis of simplifying the computational complexity and overcomes the deficiencies of OAR algorithms in the classification of true negative class events. It concludes that the research laid the foundation for the study of electricity visualization service.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd