• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于变分贝叶斯方法的充电站谐波电流叠加估计
Superposition estimation of harmonic current of charging station based on variable Bayesian
Received:January 22, 2018  Revised:January 22, 2018
DOI:
中文关键词: 充电站  谐波叠加  变分贝叶斯  高斯分布
英文关键词: Charging  Station, Harmonic  Superposition, Variational  Bayes, Gaussian  Distribution
基金项目:国网江苏省电力公司盐城供电公司项目(J2017130)
Author NameAffiliationE-mail
Chen Wen State Grid Yancheng Power Supply Company,JiangSu,YanCheng 250405965@qq.com 
Zhou Jie* School of Electrical and Information Engineering,Jiangsu University,Jiangsu,Zhenjiang 18352861173@163.com 
Xu Zhen State Grid Yancheng Power Supply Company,JiangSu,YanCheng 153847426@qq.com 
Huang Yonghong School of Electrical and Information Engineering,Jiangsu University,Jiangsu,Zhenjiang hyh@ujs.edu.cn 
Hits: 1644
Download times: 686
中文摘要:
      随着充电站规模的逐步扩大,其投入使用时产生的谐波电流对配电网的影响变得尤为严重。传统国标谐波叠加算法在实际应用中受充电站内各种因素的影响,与实际的谐波电流叠加存在偏差。针对这一问题,提出将变分贝叶斯后验参数估计方法应用于谐波电流叠加算法中,该方法通过在谐波相位的状态空间与量测空间内不断最大化边缘似然函数的下界,迭代地更新变分相位参数,直至近似分布逼近参数的真实后验分布,从而实现谐波相位叠加的精确检测。实验仿真表明,变分贝叶斯后验参数估计方法对于服从高斯分布的相位参数的叠加计算,比传统谐波叠加算法更为有效、精确,为采取精确的谐波治理提供有效的依据。
英文摘要:
      With the gradual expansion of the scale of the charging station, the influence of the harmonic current on the distribution network becomes particularly serious when it is put into use. In the practical application, the traditional national standard harmonic superposition algorithm has a deviation from the actual harmonics because of the influence of various factors in the charging station. To solve this problem, the variational Bayesian posterior parameter estimation method is applied to harmonic current superposition algorithm, this method by measuring lower bound space continuously maximum marginal likelihood function in the state space and the amount of harmonic phase, iterative updates of variational phase parameters, until the approximate distribution of the true posterior approximation parameter distribution, from the estimated parameters to achieve harmonic phase superposition. The experimental simulation shows that the variational Bayesian estimation method is more effective and accurate for the superposition of the phase parameters which obey Gauss distribution than the traditional harmonic superposition algorithm, and provides an effective basis for the precise harmonic suppression.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd