• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
栈式降噪自编码网络在变压器故障诊断中的应用
Application of stacked denoising auto-encoder network in fault diagnosis of power transformer
Received:March 18, 2018  Revised:March 21, 2018
DOI:
中文关键词: 变压器  故障诊断  深度学习  栈式降噪自编码
英文关键词: Power Transformer, fault diagnosis, deep neural network, stacked denoising auto-encoder
基金项目:
Author NameAffiliationE-mail
xuqianwen* Shandong University of Science and Technology 526963017@qq.com 
jixingquan Shandong University of Science and Technology eesdust@qq.com 
zhangyuzhen Shandong University of Science and Technology 1179012030@qq.com 
lijun handong electric power company of China Network Weihai power supply company 2445827681@qq.com 
yuyongjin Shandong University of Science and Technology yaydjto@163.com 
Hits: 1690
Download times: 651
中文摘要:
      变压器故障诊断研究中广为应用的三比值法、Rogers法等传统方法具有编码不全和判断标准过于绝对的不足,为此,把深度学习用在诊断变压器设备故障方面,研发出一种新型的变压器故障诊断技术。此技术以基于栈式降噪自编码网络为基础。建立深层网络模型,采取逐层贪婪编码的方式进行自适应的非监督式的预训练,实现高维深层故障特征的自适应提取和挖掘,进而使用反向传播算法对模型进行监督式微调。最后利用Softmax分类器,对故障进行分类输出。试验结果表明,提出的深度神经网络能改善BP神经网络易陷入局部极小化和收敛速度慢的问题,更加有效地实现变压器故障诊断。
英文摘要:
      The three-ratio method and Rogers method, which are widely used in the research of transformer fault diagnosis, have the disadvantage of incomplete coding and too absolute judgment criteria.To solve this problem,applied the deep neural network to fault diagnosis of power transformer,and proposed a fault diagnosis method based on the stacked denoising auto-encoder.A deep network model is established, and a self-adaptive and unsupervised pre-training is implemented by greedy coding. To achieve adaptive extraction and mining of high-dimensional deep fault features, the back-propagation algorithm is used to fine tune the model.Finally, the Softmax classifier is used to classify the faults.The experimental results show that compared with the traditional Back propagation (BP) neural network, the proposed deep neural network can solve the problem of easy to fall into the local minimization and slow convergence of the traditional BP neural network, and diagnosis the transformer faultmore effectively.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd