• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进模糊聚类的典型日负荷曲线选取方法
Selection method of typical daily load curve based on Improved Fuzzy Clustering
Received:March 28, 2018  Revised:March 28, 2018
DOI:
中文关键词: 改进模糊聚类算法  自适应因子  模糊-离散系数  典型日负荷曲线
英文关键词: Improved fuzzy clustering algorithm,Adaptive factor,Fuzzy discrete coefficient,Typical daily load curve
基金项目:国家自然科学基金项目(51667019)
Author NameAffiliationE-mail
xubangen School of Electrical Engineering,Xinjiang University 673575526@qq.com 
linhong* School of Electrical Engineering,Xinjiang University tseagle@163.com 
Hits: 2495
Download times: 977
中文摘要:
      典型日负荷曲线对负荷调度计划以及运行控制有着重要意义,针对常用的传统典型日负荷曲线选取方法不满足目前电力市场需求的问题,提出了基于自适应因子与概率统计法相结合的改进模糊聚类算法典型日负荷曲线选取新方法,应用日负荷率、日负荷波动率等描述性特征指标,确定最优聚类数;引入模糊-离散系数,辨识样本数据中的畸变日,并予以剔除;计算日负荷与月平均负荷之间的相关系数,依据相关系数选取典型日负荷曲线。以新疆电网2015年1月份负荷数据进行实例仿真,结果表明所提方法能够准确选出典型日负荷曲线,验证了方法的可行性和有效性。
英文摘要:
      The typical daily load curve have great significance to the load dispatching plan and operation control. Aiming at the problem that the traditional typical daily load curve selection method can not meet the demand of the current electricity market. An improved fuzzy clustering algorithm based on the combination of self-adaptive factor and probability statistics is proposed to select the typical daily load curve. The optimal clustering number is determined by using the descriptive characteristic indexes such as daily load rate and daily load fluctuation rate. The fuzzy-discrete coefficient is introduced to identify the distortion day in the sample data, and the correlation coefficient between the daily load and the monthly average load is calculated. The typical daily load curve is selected according to the correlation coefficient. The simulation results of January 2015 load data of Xinjiang Power Grid show that the proposed method can accurately select the typical daily load curve and verify the feasibility and effectiveness of the method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd