• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
广义正交匹配追踪电能质量信号重构方法
Power quality signal reconstruction based on generalized orthogonal matching pursuit method
Received:April 02, 2018  Revised:April 02, 2018
DOI:10.19753/j.issn1001-1390.2019.010.011
中文关键词: 电能质量  压缩感知  稀疏表示  广义正交匹配追踪  离散小波
英文关键词: power quality  compressive sensing  sparse representations  generalized orthogonal matching pursuit  discrete wavelet
基金项目:国家自然科学基金(61301138);江苏省自然科学基金(BK20130501); 江苏省博士后科研资助项目(1401053C);
Author NameAffiliationE-mail
Liu Guohai* Electrical Information Engineering Institute in Jiangsu University ghliu@ujs.edu.cn 
dinglingwei Electrical Information Engineering Institute in Jiangsu University 450057340@qq.com 
Shen yue Electrical Information Engineering Institute in Jiangsu University shen@ujs.edu.cn 
Li Guangwu Electrical Information Engineering Institute in Jiangsu University 244176447@qq.com 
Hits: 1679
Download times: 582
中文摘要:
      针对基于压缩感知的暂态电能质量数据信号恢复效果不佳的问题,本文提出了基于离散小波稀疏基的广义正交匹配追踪(gOMP)电能质量信号重构方法。当暂态信号出现时,基于离散小波变换的稀疏矩阵可以捕获波形细节。在重构过程中,与OMP相比由于选择了多个正确的索引而不需要附加后续操作,gOMP算法的迭代次数要少得多,而且gOMP可以完好地重建K稀疏电能质量信号。gOMP具有快速处理速度和相当优异的计算复杂性,在电能质量信号重构上具有良好的恢复性能。经过一系列的实验,暂态和稳态电能质量信号都得到了精确的重构,且重构精度大于99.76%,重构所需时间明显缩短。
英文摘要:
      Aiming at the problem of poor recovery of transient power quality data signal based on compressive sensing, this paper proposed the discrete wavelet sparse and the generalized orthogonal matching pursuit(gOMP) in reconstructing power quality data. When transient signals have appeared, the discrete wavelet sparse based can grab the details at that time. Owing to the selection of multiple “correct” indices with no additional post-processing operation, the gOMP algorithm is finished with the much smaller number of iterations when compared to the OMP, and gOMP can reconstruct K sparse power quality signals well. This paper shows that the gOMP can perfectly reconstruct any K-sparse power quality data. This paper also demonstrated by empirical simulations that the gOMP has excellent recovery performance and computational complexity. After a series of experiments, both transient and steady state signals are perfectly reconstructed and reconstruction accuracy is greater than 99.76%, and refactoring time is significantly reduced.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd