• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进型小波神经网络的谐波检测方法
Harmonic detection based on Improved Wavelet Neural Network
Received:April 13, 2018  Revised:April 13, 2018
DOI:10.19753/j.issn1001-1390.2019.010.019
中文关键词: 谐波  小波神经网路  神经网络  自相关  收敛  优化
英文关键词: Harmonic  wavelet neural network  neural network  autocorrelation  convergence  optimize
基金项目:国家自然科学基金(61673165);湖南省自然科学基金(2017JJ4024);湖南省教育厅开放基(15k036);湖南省重点实验室(2016TP1018)
Author NameAffiliationE-mail
Lishengqing Hunan University of Technology 3122314821@qq.com 
wangfeigang* Hunan University of Technology 1337607411@qq.com 
朱晓青 Hunan University of Technology 123571571@qq.com 
Hits: 1421
Download times: 644
中文摘要:
      随着大功率器件使用,造成电网中有大量谐波,威胁设备的安全。本文提出运用小波神经网络(wave neural network,WNN)算法来检测谐波。首先,针对神经网络初始值设置不当导致的网络收敛慢甚至不收敛的问题,提出了网络初始参数自相关修正的优化方法,提高了网络的性能。其次,运用附加动量项的训练算法平滑了权值学习路径,有效避免了网络训练陷入局部最小,提高了谐波检测精度。最后,经过与其它检测方法的仿真对比,证明了本文所述方法具有收敛速度快,检测精度高的优点。
英文摘要:
      With the use of high power devices, resulting in a large number of harmonics, threat the safety of equipment. This paper proposes the use of wavelet neural network (wave neural network WNN) algorithm to detect harmonics. Firstly, the initial value of neural network convergence set due to improper slow or even non convergence problems, put forward a method of optimal initial parameters correlation correction, improve the network performance. Secondly, using smoothing training algorithm with additional momentum item weights learning path, avoid network training into local minimum, to improve the precision of harmonic detection. Finally, through simulation and comparison with other detection methods, proved that the method presented in this paper has advantages of fast convergence speed, detection high precision.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd