• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于RBF神经网络的电网脆弱性评估及其趋势估计
Power Grid Vulnerability Assessment Based on RBF Neural Network and its Vulnerability Trend Estimation
Received:April 17, 2018  Revised:April 17, 2018
DOI:
中文关键词: 电网脆弱性  非线性  脆弱性指标  神经网络  AR模型  趋势估计
英文关键词: network vulnerability  nonlinear  vulnerability indicators  neural networks  AR model  trend estimation
基金项目:
Author NameAffiliationE-mail
wang yaosheng School of Electrical Engineering and Information ,Sichuan University 2569377335@qq.com 
zhang yingmin* School of Electrical Engineering and Information ,Sichuan University 2569377335@qq.com 
wang chang School of Electrical Engineering and Information ,Sichuan University 2569377335@qq.com 
qi wanbi School of Electrical Engineering and Information ,Sichuan University 2569377335@qq.com 
Hits: 1497
Download times: 720
中文摘要:
      本文建立了分层网状拓扑结构下的电网脆弱性评价体系,针对该体系提出了基于径向基函数(radial basis function,RBF)神经网络的电网脆弱性评估方法。将电网综合脆弱性分为状态脆弱性和结构脆弱性,并与相应的子指标构成脆弱性网状评价体系,同时以高斯(Gauss)函数作为RBF神经网络函数的核函数解决指标间的非线性问题。通过MATLAB中的RBF神经网络函数对IEEE14母线系统计算分析,验证了该方法的全面性与有效性。最后,针对节点多个测量周期的脆弱性测度建立自回归(auto regression,AR)模型,通过判定AR模型的差分方程稳定性,分析了节点脆弱性测度的发展趋势。
英文摘要:
      This paper establishes the hierarchical network topology of network vulnerability evaluation system. The system was proposed based on radial basis function (RBF) neural network method of grid vulnerability assessment. The comprehensive vulnerability of the power grid is divided into the state vulnerability and structural vulnerability, and the corresponding sub-indexes constitute the vulnerability network evaluation system. At the same time, with Gauss functions as the kernel function of RBF neural network function to solve nonlinear problem between the indicators. By using the RBF neural network function in MATLAB, the calculation and analysis of IEEE14 bus system is carried out to verify the comprehensiveness and effectiveness of the method. Finally, For multiple nodes of the measurement cycle vulnerability measure establishing auto regressive (AR) model, the AR model is to determine the stability of difference equation and analyse the development trend of node vulnerability measure.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd