• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于拟合剔除的优化小波神经网络太阳辐射量预测
Prediction of solar radiation based on Optimized wavelet neural network with fitting and culling
Received:April 20, 2018  Revised:April 20, 2018
DOI:
中文关键词: 曲线拟合  拉依达准则  小波神经网络  太阳辐射量
英文关键词: Curve fitting, Pauta criterion, wavelet neural network, solar radiation
基金项目:国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
Gao Liang Xinjiang University 1793346200@qq.com 
Zhang Xinyan* Xinjiang University 1793346200@qq.com 
Zhang Jiajun Xinjiang University 1793346200@qq.com 
Tong Tao Xinjiang University 1793346200@qq.com 
Hits: 1741
Download times: 807
中文摘要:
      摘要:准确预测太阳辐射量,对太阳能相关产业具有重要意义,针对太阳辐射的波动性和间歇性,本文提出一种基于曲线拟合和拉依达准则的数据处理和优化的小波神经网络的太阳辐射量的预测方法。通过历史太阳辐射数据和气象数据对太阳辐射量进行直接预测。对测量值求拟合曲线,利用拉依达准则对数据的拟合值和测量值的偏差做粗大误差的判断,修正后的数据作为小波神经网络的输入,避免输入极端数据造成预测信息畸形的问题。增加测试数据对小波神经网络做隐含层节点数寻优的计算,克服小波神经网络无法确定隐含层节点数的缺点。通过建立不同预测模型进行对比,验证了所提算法和模型的正确性。
英文摘要:
      Abstract: It is significant to solar energy related industries predicting solar radiation accurately, for the volatility and intermittent of solar radiation, a solar radiation prediction method based on the Optimization wavelet neural network with curve fitting and Pauta criterion is put forward. Predicting the solar radiation amount through the historical solar radiation data and meteorological data, fitting curve to the measured value, and get rid of the great error of the fitting value and the measured value according to the Pauta criterion. The correctional data is used as the input of the wavelet neural network, to avoid problem of measuring information malformation because of input with the extreme data. Additional test data to do the optimization calculation of hidden layer node number for wavelet neural network to overcome the shortcoming that Wavelet Neural Network cannot determine the number of hidden layer nodes. By comparing different prediction models, the correctness of the proposed algorithm and model is verified.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd