• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于系数估值约束的改进LMS自适应滤波算法
Improved LMS Adaptive Filtering Algorithm Based on Coefficient Estimate Constraints
Received:May 09, 2018  Revised:May 09, 2018
DOI:
中文关键词: 分布式估计  脉冲噪声  参数估计值约束  变步长  
英文关键词: Distributed Estimation  Impulsive Interference  parameter estimation constraint  Variable Step-size
基金项目:
Author NameAffiliationE-mail
Wang Yan* Xi'an Eurasia University w_yart567@163.com 
Hits: 2175
Download times: 562
中文摘要:
      为了设计一种快速收敛而又具有低的稳态误差、鲁棒的自适应滤波算法,在扩散LMS算法基础上,提出一种基于未知参数估计值约束的分布式自适应网络滤波算法,算法在迭代收敛过程中,根据相邻迭代参数估计值的差值范数自适应的调整步长大小,从而使得算法在估计初期采用较大步长以加速收敛,而在估计后期自适应的调整步长以保持较低的稳态误差。对比实验结果表明:相比ATC-DSELMS、ATC-DLMS和ATC-DLMS/F算法,本文所提算法在进行分布式估计时性能更优。
英文摘要:
      In order to design a fast-convergence, low steady-state error and robust adaptive filtering algorithm, based on the diffuse LMS algorithm, a distributed adaptive network filtering algorithm based on the unknown parameter estimation constraint is proposed. In the proposed method, during the iterative convergence process, the step size is adaptively adjusted according to the difference norm of parameter estimates between adjacent iterations. Thus, a large step size is used to accelerate the convergence at a faster speed in the initial estimation period, and an adaptive adjustment step length is used in the later period to maintain a relatively low steady-state error. Comparison of experimental results shows that, the proposed algorithm performs better in distributed estimation comparing with ATC-DSELMS, ATC-DLMS and ATC-DLMS/F algorithms.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd